Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, we tested the effect of Teriparatide (PTH) in combination with β-tricalcium phosphate (β-TCP) as a bone void filler in an ovariectomised rat distal femoral metaphysis model.β-TCP is a completely resorbable synthetic calcium phosphate and the Teriparatide is a drug that can promote bone formation in the condition of osteoporosis. A critical size defect of 3mm in diameter, a through-hole bone defect, was drilled into each distal femur of the ovariectomised rats. The hole was filled with β-TCP and the rat was injected PTH Teriparatide (30μg/kg) in peritoneum 5 times per week. After 4and 8 weeks the animals were killed and the degree of bone healing analysed. In total, 60 animals were investigated. When the β-TCP and PTH were used, histological, biochemistry and histomor-phometric evaluations revealed significantly better bone healing in terms of quantity and quality of the newly formed bone. The Ovariectomised rats which suffer from femur metaphysis defect are cured by embedding β-tricalcuim phosphate and intermittently cured by parathyroid hormone (PTH).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.injury.2015.07.042DOI Listing

Publication Analysis

Top Keywords

β-tricalcium phosphate
8
femoral metaphysis
8
metaphysis defect
8
ovariectomised rats
8
bone healing
8
bone
6
exerted teriparatide
4
teriparatide repair
4
repair function
4
function β-tricalcium
4

Similar Publications

P3IPs activate autophagy by disrupting the GAPC2-ATG3 interaction and target TuMV 6K2 for degradation.

New Phytol

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.

Our previous work identified p3-interacting protein (P3IP) as a novel plant factor that interacts with rice stripe virus p3 protein and activates autophagy to mediate its degradation, thereby restricting infection. However, the mechanism of P3IP-mediated autophagy and the evolutionary conservation of its antiviral function remain unknown. This study demonstrates that two Arabidopsis thaliana homologs, AtP3IP and AtP3IPH (Arabidopsis P3IP homologs, AtP3IPs), similarly activate autophagy and confer resistance to turnip mosaic virus (TuMV).

View Article and Find Full Text PDF

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.

View Article and Find Full Text PDF

Aims: Intravenous tolvaptan sodium phosphate (IV-tolvaptan) is a novel aquaretic agent for acute decompensated heart failure (ADHF). This study evaluated its short-term effects and prognostic implications in clinical practice.

Methods And Results: In this retrospective cohort of 169 consecutive ADHF patients receiving IV-tolvaptan for the first time (mean age 76.

View Article and Find Full Text PDF

High-entropy metal phosphide nanoparticles for accelerated lithium polysulfide conversion.

Chem Sci

September 2025

School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University Nanning 530004 P. R. China

To overcome the persistent challenges of sluggish lithium polysulfide (LiPS) conversion kinetics and the shuttle effect in Li-S batteries, this work introduces a novel, cost-effective thermal treatment strategy for synthesizing high-entropy metal phosphide catalysts using cation-bonded phosphate resins. For the first time, we successfully fabricated single-phase high-entropy FeCoNiCuMnP nanoparticles anchored on a porous carbon network (HEP/C). HEP/C demonstrates enhanced electronic conductivity and superior LiPS adsorption capability, substantially accelerating its redox kinetics.

View Article and Find Full Text PDF

Zinc(II) bis(triazolyl)(pyridyl)amine (Zn(BTPA)) complexes on the end of α-amino-iso-butyric acid (Aib) foldamers are able to transfer chirality from bound anions to the helical foldamer body. Zn(BTPA) could be obtained by simple synthetic methodology that allowed a range of functional groups to be installed around the binding site, exemplified with a fluorophore, a macrocyclic bridge and Aib itself. Changing functional group did not prevent chiral ligands from controlling foldamer conformation, although differences in complexation kinetics and equilibria were observed.

View Article and Find Full Text PDF