98%
921
2 minutes
20
While ion to electron transducing layers for the fabrication of potentiometric membrane electrodes for the detection of cations have been well established, similar progress for the sensing of anions has not yet been realized. We report for this reason on a novel approach for the development of all-solid-state anion selective electrodes using lipophilic multiwalled carbon nanotubes (f-MWCNTs) as the inner ion to electron transducing layer. This material can be solvent cast, as it conveniently dissolves in tetrahydrofuran (THF), an important advantage to develop uniform films without the need for using surfactants that might deteriorate the performance of the electrode. Solid contact sensors for carbonate, nitrate, nitrite, and dihydrogen phosphate are fabricated and characterized, and all exhibit comparable analytical characteristics to the inner liquid electrodes. For example, the carbonate sensor exhibits a Nernstian slope of 27.2 ± 0.8 mV·dec(-1), a LOD = 2.3 μM, a response time of 1 s, a linear range of four logarithmic units, and a medium-term stability of 0.04 mV·h(-1) is obtained in a pH 8.6 buffered solution. Water layer test, reversibility, and selectivity for chloride, nitrate, and hydroxide are also reported. The excellent properties of f-MWCNTs as a transducer are contrasted to the deficient performance of poly(3-octyl-thiophene) (POT) for carbonate detection. This is evidenced both with a significant drift in the potentiometric measures as well as a pronounced sensitivity to light (either sunlight or artificial light). This latter aspect may compromise its potential for environmental in situ measurements (night/day cycles). The concentration of carbonate is determined in a river sample (Arve river, Geneva) and compared to a reference method (automatic titrator with potentiometric pH detection). The results suggest that nanostructured materials such as f-MWCNTs are an attractive platform as a general ion-to-electron transducer for anion-selective electrodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5b01941 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
L. V. Pisarzhevsky Institute of Physical Chemistry of NASU SE "RADMA", 31, pr. Nauky ave, Kyiv 03680, Ukraine.
The effect of electron irradiation ( = 1.8 MeV) on the optical properties of polyethylene glycol 400-multiwalled carbon nanotube (PEG-400/MWCNT) nanocomposite films was studied within an absorbed dose range of 0 to 0.4 MGy.
View Article and Find Full Text PDFMikrochim Acta
September 2025
National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei Street, 060021, Bucharest, Romania.
Molecular recognition and determination of vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6), and natriuretic peptide C-type (NPPC) are essential for the early prognosis and diagnosis of cardiovascular diseases, especially in young obese populations. Highly sensitive and selective devices characterized by low Limits of quantification are required for their determination in whole blood. Therefore, a 3D stochastic sensor was developed by immobilizing a chitosan hydrogel onto a carbon paste electrode (used as the support matrix for the hydrogel), which was subsequently modified with gold nanoparticles, multi-walled carbon nanotubes, and β-cyclodextrin (β-CD/AuNPs@MWCNT/CS/CPE).
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
The spontaneous formation of an ordered array of twisted cobalt(II) porphyrins yields a 2D self-assembled structure that is then wrapped around multiwalled carbon nanotubes (MWCNTs) and characterized using different techniques. The structure of β-tetracyano--tetraphenylporphyrinatocobalt(II) (2-Co) shows axial ligation of the metal center with cyano groups when it is adsorbed on the nanotube sidewalls, and the nanotube acts as a template for the formation of the framework layer. The electrocatalytic applications of the formed conjugate are explored in terms of the activity and the selectivity in the oxygen reduction reaction (ORR) in basic media.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
The Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
Flexible sensors integrating motion detection and tactile perception capabilities demonstrate significant potential in aerospace biomechanics and medical rehabilitation. Here, we report a biomimetic inflatable chamber sensor that synergistically integrates pneumatic-auxiliary and electronic sensing for elbow joint health monitoring. The device architecture combines multiwalled carbon nanotube-reinforced silicone composites with embedded electrode arrays integrated within the inner lining of inflatable chambers, achieving high sensitivity while maintaining signal stability under electromagnetic interference.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
The heat dissipation of high-power chips places higher demands on the thermal conductivity () of polymer-based thermal interface materials (TIMs) to ensure the stable operation of the chips. However, the interfacial thermal resistance (ITR) greatly restricts further improvement. Herein, 1D multiwalled carbon nanotubes modified with carboxyl (CNTs-) were introduced to the aramid matrix via blade coating, and a strategy of the intrinsic interfacial interaction and synergistic orientation was ingeniously adopted to enhance thermal transport.
View Article and Find Full Text PDF