98%
921
2 minutes
20
It is well documented that using exhaustive chemical extractions is not an effective means of assessing exposure of hydrophobic organic compounds in sediments and that bioavailability-based techniques are an improvement over traditional methods. One technique that has shown special promise as a method for assessing the bioavailability of hydrophobic organic compounds in sediment is the use of Tenax-extractable concentrations. A 6-h or 24-h single-point Tenax-extractable concentration correlates to both bioaccumulation and toxicity. This method has demonstrated effectiveness for several hydrophobic organic compounds in various organisms under both field and laboratory conditions. In addition, a Tenax bioaccumulation model was developed for multiple compounds relating 24-h Tenax-extractable concentrations to oligochaete tissue concentrations exposed in both the laboratory and field. This model has demonstrated predictive capacity for additional compounds and species. Use of Tenax-extractable concentrations to estimate exposure is rapid, simple, straightforward, and relatively inexpensive, as well as accurate. Therefore, this method would be an invaluable tool if implemented in risk assessments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/etc.2960 | DOI Listing |
Inorg Chem
September 2025
Chemical Engineering Department, Delft University of Technology, 2629 HZ Delft, The Netherlands.
A key challenge in capturing CO from postcombustion gases is humidity due to competitive adsorption between CO and HO. Multivariate (MTV) metal-organic frameworks (MOFs) have been considered a promising option to address this problem, e.g.
View Article and Find Full Text PDFWater Res
September 2025
College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China. Electronic address:
Microplastics (MPs)-derived dissolved organic matter (MPs-DOM) is emerging as a significant contributor to environmental DOM pools. However, the molecular-scale processes governing its interactions with mineral and their effects on photoreactivity remain poorly understood. This study elucidates the structure-dependent molecular transformations and photochemical reactivity of DOM during its interaction with goethite, revealing distinct mechanisms driving reactive oxygen species (ROS) dynamics.
View Article and Find Full Text PDFAn Acad Bras Cienc
September 2025
Federal University of Minas Gerais, Department of Sanitary and Environmental Engineering, 6627, Antônio Carlos Avenue, Campus Pampulha, 31270-010 Belo Horizonte, MG, Brazil.
Micro- and nanoplastics (MNPs) are emerging contaminants increasingly recognized for their environmental and health implications. While surface water systems have been extensively studied, the presence, behavior, and impacts of MNPs in groundwater remain underexplored, despite its critical role as water source worldwide. The findings in this review highlight that agricultural activities, particularly plastic mulches, pesticides containers, fertilizer bags, greenhouses, are major sources of MNP.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Chemistry, Wuhan University, Wuhan 430072, China.
Three-dimensional printing (3DP) technology enables the flexible fabrication of integrated monolithic microextraction chips for high-throughput sample pretreatment. Meanwhile, the extraction performance of 3DP-based channels is largely limited by printer resolution and the commercially available printing materials. In this work, a 3DP array monolithic microextraction chip (AMC) was fabricated by integrating 26-array helical monolithic microextraction channels for sample pretreatment and 52-array gas valves for fluid control.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Inorganic Chemistry I Institute, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany.
Herein, we report a solid-state polycyclotrimerization of 1,4-diethynylbenzene using mechanochemical activation in a ball mill, yielding a highly porous and hydrophobic hyperbranched polymer (HBP) with a specific surface area of up to 570 m g. The reaction, catalyzed by Fe(hmds) and conducted under solvent-free conditions, was optimized by varying milling time and frequency. This method enables the efficient synthesis of insoluble, porous organic polymers with high yields (up to 95%) and offers an environmentally friendly alternative to traditional solution-based polymerizations.
View Article and Find Full Text PDF