Publications by authors named "Samuel A Nutile"

Non-target organisms in aquatic environments may experience lethal or sublethal effects following exposure to contaminants. Most protocols and regulations, however, are designed to provide protection from lethal effects and are thus based on conventional estimates of population lethality. The relative lack of reliable behavioral endpoints makes it challenging to implement regulations that are similarly protective against sublethal toxicity.

View Article and Find Full Text PDF

Accumulation of polychlorinated biphenyls (PCBs) within fish tissues has prompted many states to issue consumption advisories. In Pennsylvania such advisories suggest one meal per month for most game species harvested from Lake Erie; however, these advisories do not account for the emergent properties of regional PCB mixtures, and the downstream accumulation of PCB congeners into human tissues is poorly documented. This study aimed to demonstrate the utility of pairing environmental monitoring with pharmacokinetic modeling for the purpose of estimating dietary PCB exposure in humans.

View Article and Find Full Text PDF
Article Synopsis
  • Single-point Tenax extractions are effective for estimating the bioaccessibility of hydrophobic contaminants like PCBs in various environments, with the potential for reusing the extraction beads under certain conditions.
  • A study was conducted to assess the reusability of Tenax beads by comparing PCB concentrations using both new and aged beads across multiple extraction cycles.
  • Results showed that, aside from certain PCB congeners that varied widely, the aged Tenax beads provided consistent bioaccessibility estimates, indicating no significant impact on their effectiveness after multiple uses.
View Article and Find Full Text PDF

Remediation of hydrophobic organic contaminants using activated carbon is an effective means by which to clean up contaminated areas. Predicting remediation success using laboratory experimentation with soil, however, is unclear. Current remediation efforts involving activated carbon addition to floodplain soils downstream of the Velsicol Chemical Corporation Superfund Site (VCCSS) have offered the opportunity to directly compare in situ activated carbon remediation with laboratory experimentation.

View Article and Find Full Text PDF

Much scientific research dedicated to understanding the effects of freshwater salinization caused by road de-icing salts has utilized static exposures, with many tests conducted at winter or spring temperatures. While relevant for lentic ecosystems, pulsed patterns of salinity occur in lotic environments, particularly in summer months where precipitation can decrease elevated salinity levels caused by retention of residual salts. The current study aimed to evaluate the effects of pulsed patterns of salinity on the emergence, sex ratio, and fecundity of Chironomus dilutus over two generations of laboratory exposure.

View Article and Find Full Text PDF

Bioaccessibility-based extraction tools, such as single-point Tenax extractions (SPTEs), provide cost-effective and accurate estimates of bioaccumulation and toxicity of hydrophobic organic contaminants during environmental sampling. Use of SPTEs as a screening tool in risk assessment is hindered by the requirement for normalization of extractable concentrations for organic carbon (OC). Normalizing SPTE concentrations for the volume of Tenax used during the extraction could improve the applicability of this methodology by removing the system dependence when applying SPTE concentrations to estimates of bioaccumulation.

View Article and Find Full Text PDF

The dissemination of information associated with scientific achievement serves to advance research and guide future experimentation. In the sphere of environmental science, such advancements aim to better characterize harmful chemicals and the factors that influence in situ toxicity, which is central to the protection of the environments upon which humans depend. While some information regarding the dangers associated with common anthropogenic contaminants reaches wider audiences, the nuance of this information is often lost, potentially leading to ineffective solutions, specifically as it relates to nonpoint source contamination.

View Article and Find Full Text PDF

Pyrethroids are a class of widely-used insecticides that can be transported from terrestrial applications to aquatic systems via runoff and tend to sorb to organic carbon in sediments. Pyrethroid occurrence is detrimental to stream ecosystems due to toxicity to sediment-dwelling invertebrates which are particularly at risk of pyrethroid exposure in urban streams. In this work, 49 streams located in watersheds in the northeastern United States were surveyed for nine current-use pyrethroids using two extraction methods.

View Article and Find Full Text PDF

An influx of chloride ions from road de-icing solutions can result in toxicological effects to organisms in terrestrial and aquatic environments. As such, "eco-friendly" de-icing alternatives are sought to mitigate environmental impacts of de-icing impervious surfaces, while maintaining human safety. While many alternative de-icers are economically impractical for municipal use, the residential commercial market is flooded with de-icing formulations claiming to be "eco-friendly".

View Article and Find Full Text PDF

The ecotoxicological effects of hydrophobic organic compound (HOC) contamination in sediment are often assessed using laboratory exposures of cultured invertebrates to field-collected sediment. The use of a sediment holding time (storage at 4 °C) between field sampling and the beginning of the bioassay is common practice, yet the effect of holding time on the reliability of bioassay results is largely unknown, especially for current-use HOCs, such as pyrethroid insecticides. Single-point Tenax extraction can be used to estimate HOC concentrations in the rapidly desorbing phase of the organic carbon fraction of sediment (i.

View Article and Find Full Text PDF

This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical guidance for standardized passive sampling, and advance the use of passive sampling in regulatory decision making by increasing confidence in the use of the technique. The study was performed by a consortium of 11 laboratories and included experiments with 14 passive sampling formats on 3 sediments for 25 target chemicals (PAHs and PCBs).

View Article and Find Full Text PDF

Current methods for evaluating exposure in ecosystems contaminated with hydrophobic organic contaminants typically focus on sediment exposure. However, a comprehensive environmental assessment requires a more holistic approach that not only estimates sediment concentrations, but also accounts for exposure by quantifying other pathways, such as bioavailability, bioaccumulation, trophic transfer potential, and transport of hydrophobic organic contaminants within and outside of the aquatic system. The current study evaluated the ability of multiple metrics to estimate exposure in an aquatic ecosystem.

View Article and Find Full Text PDF

Single-point Tenax extractions (SPTEs) of hydrophobic organic contaminants provide estimates of bioaccessibility through consistent measures of the chemical concentration initially in the rapidly desorbing fraction in sediment (C ), such that a constant ratio is expected between SPTE and C (C /C , where T is the duration of the SPTE). As environmental factors (i.e.

View Article and Find Full Text PDF

Use of Tenax extractable concentrations to estimate biological exposure to hydrophobic organic contaminants is well documented, yet method variation exists between studies, specifically in the ratio of Tenax mass to organic carbon mass in the sediment (Tenax:OC ratio) being extracted. The effects of this variation on exposure estimates are not well understood. As Tenax is theoretically in direct competition with organic carbon for freely dissolved chemical in sediment interstitial water, varying the Tenax:OC ratio could impact single-point Tenax extraction (SPTE) exposure estimates.

View Article and Find Full Text PDF

The recent discovery of pyrethroid-resistant Hyalella azteca populations in California, USA suggests there has been significant exposure of aquatic organisms to these terrestrially-applied insecticides. Since resistant organisms are able to survive in relatively contaminated habitats they may experience greater pyrethroid bioaccumulation, subsequently increasing the risk of those compounds transferring to predators. These issues were evaluated in the current study following toxicity tests in water with permethrin which showed the 96-h LC50 of resistant H.

View Article and Find Full Text PDF

It is well documented that using exhaustive chemical extractions is not an effective means of assessing exposure of hydrophobic organic compounds in sediments and that bioavailability-based techniques are an improvement over traditional methods. One technique that has shown special promise as a method for assessing the bioavailability of hydrophobic organic compounds in sediment is the use of Tenax-extractable concentrations. A 6-h or 24-h single-point Tenax-extractable concentration correlates to both bioaccumulation and toxicity.

View Article and Find Full Text PDF

Characterizing sediment-associated hydrophobic contaminants is problematic, because assessing the total amount of a compound available for chemical exchange with an organism is difficult. To address this, contaminant concentrations have been normalized for specific sediment characteristics (including organic C content) or the chemical activity has been estimated using passive samplers. Another approach to assess compound availability is to determine the extent of readily desorbed compound using resin extractions of sediment slurries.

View Article and Find Full Text PDF