Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, we further investigated a previously developed aptamer targeting ROS 17/2.8 (rat osteosarcoma) cells. We found that this C6-8 aptamer specifically binds to heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 and that it specifically labeled multiple tumor-cell lines as effectively as hnRNP A2/B1 monoclonal antibodies. When conjugated with fluorescent carbon nanodots (CDots) it could freely enter multiple living tumor cell lines (HepG2, MCF-7, H1299, and HeLa), whose growth it inhibited by targeting hnRNP A2/B1. Similar inhibitory effects were observed when the GFP-HepG2 hepatocarcinoma cells treated with C6-8-conjugated CDots were implanted in nude mice. Our work provides a new aptamer for targeting/labeling multiple tumor cell types, and its nanoparticle conjugates bring further advantages that increase its potential for use in cancer diagnosis and therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2015.06.013DOI Listing

Publication Analysis

Top Keywords

hnrnp a2/b1
16
aptamer targeting
8
targeting hnrnp
8
multiple tumor
8
tumor cell
8
nanoparticle-conjugated aptamer
4
hnrnp
4
a2/b1
4
a2/b1 recognize
4
multiple
4

Similar Publications

The pseudouridine synthase DKC1 regulates internal ribosome entry site (IRES)-dependent translation and is up-regulated in cancers by the MYC family of oncogenes. The functional significance of DKC1 up-regulation and the mechanistic connection between pseudouridylation and IRES-mediated translation remain poorly understood. Here, we report that DKC1 drives an ATF4-mediated transcriptional program that supports amino acid metabolism and stress adaptation.

View Article and Find Full Text PDF

TDP-43, an RNA-binding protein (RBP) encoded by the TARDBP gene, is crucial for understanding the pathogenesis of neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. Dysregulated TDP-43 causes motor neuron loss, highlighting the need for proper expression levels. Here, we identify a dominant-negative isoform among the multiple TARDBP splicing variants and validate its endogenous expression using a developed antibody against its translated product.

View Article and Find Full Text PDF

Aims: Sevoflurane can aggravate the progression of neurodegeneration, although the underlying mechanisms remain incompletely understood. Our previous study identified a link between heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) and sevoflurane-induced neurocognitive impairments. The abnormal hydrogel phase transition of stress granules (SGs) assembled via liquid-liquid phase separation (LLPS) by hnRNPA2/B1 is a crucial element in neurodegeneration.

View Article and Find Full Text PDF

Introduction: Splicing protein mislocalization is associated with tau pathogenesis, but its role in Down syndrome (DS) is under-investigated.

Methods: Spliceosome associations with tau and plaque pathology were examined in frontal cortex from DS with dementia (DSD+) and without dementia (DSD-) using quantitative immunoblotting and immunohistochemistry.

Results: U1-70K and U1A levels were downregulated, and hnRNPA2B1, 3Rtau, and 4Rtau were upregulated, whereas SRSF2 and CLK1 were unchanged in DSD+.

View Article and Find Full Text PDF

Oligodendrocyte dysfunction, myelin degeneration, and white matter changes are critical events in the cognitive decline of Alzheimer's disease (AD). Amyloid-β peptide (Aβ), a hallmark of AD, disrupts oligodendrocyte and myelin homeostasis, through mechanisms that remain poorly understood. Here, transcriptomic profiling of Aβ-exposed oligodendrocytes revealed widespread gene expression changes, particularly in RNA-related processes.

View Article and Find Full Text PDF