98%
921
2 minutes
20
Mechanisms governing a neuron's regenerative ability are important but not well understood. We identify Rtca (RNA 3'-terminal phosphate cyclase) as an inhibitor of axon regeneration. Removal of Rtca cell-autonomously enhanced axon regrowth in the Drosophila CNS, whereas its overexpression reduced axon regeneration in the periphery. Rtca along with the RNA ligase Rtcb and its catalyst Archease operate in the RNA repair and splicing pathway important for stress-induced mRNA splicing, including that of Xbp1, a cellular stress sensor. Drosophila Rtca and Archease had opposing effects on Xbp1 splicing, and deficiency of Archease or Xbp1 impeded axon regeneration in Drosophila. Moreover, overexpressing mammalian Rtca in cultured rodent neurons reduced axonal complexity in vitro, whereas reducing its function promoted retinal ganglion cell axon regeneration after optic nerve crush in mice. Our study thus links axon regeneration to cellular stress and RNA metabolism, revealing new potential therapeutic targets for treating nervous system trauma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446171 | PMC |
http://dx.doi.org/10.1038/nn.4019 | DOI Listing |
Elife
September 2025
Department of Neuroscience, Washington University School of Medicine, St Louis, United States.
Peripheral sensory neurons regenerate their axons after injury to regain function, but this ability declines with age. The mechanisms behind this decline are not fully understood. While excessive production of endothelin 1 (ET-1), a potent vasoconstrictor, is linked to many diseases that increase with age, the role of ET-1 and its receptors in axon regeneration is unknown.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P. R. China.
Fibrotic scarring remains a critic obstacle to axonal regeneration after spinal cord injury (SCI). Current strategies primarily concentrating on eliminating extracellular matrix (ECM) components neglect their dispensable roles in maintaining tissue integrity. Here, it is reported that the mechanical strength of an integrated hydrogel composed of hyaluronic acid-graft-dopamine and HRR peptide directs fibroblast migration, determining ECM deposition.
View Article and Find Full Text PDFJ Hand Surg Glob Online
November 2025
Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN.
Purpose: Limitations remain in peripheral nerve injury treatments. Previous studies suggest that serotonergic signaling promotes nerve regeneration by facilitating reinnervation and modulating neuronal guidance. This study aimed to evaluate the potential of serotonergic peripheral neuroregeneration using Zolmitriptan, a serotonin receptor agonist.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Spine Surgery, Zhongda Hospital Southeast University, 210009 Nanjing, Jiangsu, China.
Background: After spinal cord injury (SCI), pro-inflammatory microglia accumulate and impede axonal regeneration. We explored whether secreted protein acidic and rich in cysteine (Sparc) restrains microglial inflammation and fosters neurite outgrowth.
Methods: Mouse microglial BV2 cells were polarized to a pro-inflammatory phenotype with lipopolysaccharides (LPSs).
ACS Chem Neurosci
September 2025
School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China.
Glial cells play an indispensable role in the nervous system, providing structural support to neurons and regulating their function and development. Glia support neural network formation and plasticity in axon guidance, synaptic pruning, and neurogenesis. Of note, studies have shown that glial cell dysfunction is closely related to the occurrence of neurological diseases.
View Article and Find Full Text PDF