Human pluripotent stem cells as tools for neurodegenerative and neurodevelopmental disease modeling and drug discovery.

Expert Opin Drug Discov

University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico , via Francesco Sforza 35, Milan 20122 , Italy +39 02 55033817 ;

Published: June 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Although intensive efforts have been made, effective treatments for neurodegenerative and neurodevelopmental diseases have not been yet discovered. Possible reasons for this include the lack of appropriate disease models of human neurons and a limited understanding of the etiological and neurobiological mechanisms. Recent advances in pluripotent stem cell (PSC) research have now opened the path to the generation of induced pluripotent stem cells (iPSCs) starting from somatic cells, thus offering an unlimited source of patient-specific disease-relevant neuronal cells.

Areas Covered: In this review, the authors focus on the use of human PSC-derived cells in modeling neurological disorders and discovering of new drugs and provide their expert perspectives on the field.

Expert Opinion: The advent of human iPSC-based disease models has fuelled renewed enthusiasm and enormous expectations for insights of disease mechanisms and identification of more disease-relevant and novel molecular targets. Human PSCs offer a unique tool that is being profitably exploited for high-throughput screening (HTS) platforms. This process can lead to the identification and optimization of molecules/drugs and thus move forward new pharmacological therapies for a wide range of neurodegenerative and neurodevelopmental conditions. It is predicted that improvements in the production of mature neuronal subtypes, from patient-specific human-induced pluripotent stem cells and their adaptation to culture, to HTS platforms will allow the increased exploitation of human pluripotent stem cells in drug discovery programs.

Download full-text PDF

Source
http://dx.doi.org/10.1517/17460441.2015.1037737DOI Listing

Publication Analysis

Top Keywords

pluripotent stem
20
stem cells
16
neurodegenerative neurodevelopmental
12
human pluripotent
8
drug discovery
8
disease models
8
hts platforms
8
human
6
cells
6
stem
5

Similar Publications

Background And Purpose: Neuroinflammation is increasingly recognised to contribute to drug-resistant epilepsy. Activation of ATP-gated P2X7 receptors has emerged as an important upstream mechanism, and increased P2X7 receptor expression is present in the seizure focus in rodent models and patients. Pharmacological antagonists of P2X7 receptors attenuate seizures in rodents, but this has not been explored in human neural networks.

View Article and Find Full Text PDF

Molecular subtypes of human skeletal muscle in cancer cachexia.

Nature

September 2025

Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.

Cancer-associated muscle wasting is associated with poor clinical outcomes, but its underlying biology is largely uncharted in humans. Unbiased analysis of the RNAome (coding and non-coding RNAs) with unsupervised clustering using integrative non-negative matrix factorization provides a means of identifying distinct molecular subtypes and was applied here to muscle of patients with colorectal or pancreatic cancer. Rectus abdominis biopsies from 84 patients were profiled using high-throughput next-generation sequencing.

View Article and Find Full Text PDF

Human gastroids to model regional patterning in early stomach development.

Nature

September 2025

Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.

The human stomach features distinct, regionalized functionalities along the anterior-posterior axis. Historically, studies on stomach patterning have used animal models to identify the underlying principles. Recently, human pluripotent stem (hPS)-cell-based gastric organoids for modelling domain-specific development of the fundic and antral epithelium are emerging.

View Article and Find Full Text PDF

Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.

View Article and Find Full Text PDF

Leber's hereditary optic neuropathy (LHON), a mitochondrial disorder marked by central vision loss, exhibits incomplete penetrance and male predominance. Since there are no adequate models for understanding the rapid vision loss associated with LHON, we generated induced pluripotent stem cells (iPSCs) from LHON patients carrying the pathogenic m.3635G > A mutation and differentiated them into retinal pigment epithelium (RPE) cells.

View Article and Find Full Text PDF