98%
921
2 minutes
20
Background: We explored the impact of transient cART started during the primary HIV-infection (PHI) on the long-term immunologic and virologic response on cART resumption, by comparison with treatment initiation during the chronic phase of HIV infection (CHI).
Methods: We analyzed data on 1450 patients enrolled during PHI in the ANRS PRIMO cohort between 1996 and 2013. "Treatment resumption" was defined as at least 3 months of resumed treatment following interruption of at least 1 month of treatment initiated during PHI. "Treatment initiation during CHI" was defined as cART initiated ≥6 months after PHI. The virologic response to resumed treatment and to treatment initiated during CHI was analyzed with survival models. The CD4 cell count dynamics was modeled with piecewise linear mixed models.
Results: 136 patients who resumed cART for a median (IQR) of 32 (18-51) months were compared with 377 patients who started cART during CHI for a median of 45 (22-57) months. Most patients (97%) achieved HIV-RNA <50 cp/mL after similar times in the two groups. The CD4 cell count rose similarly in the two groups during the first 12 months. However, after 12 months, patients who started cART during CHI had a better immunological response than those who resumed cART (p = 0.01); therefore, at 36 months, the gains in √CD4 cells/mm(3) and CD4% were significantly greater in patients who started treatment during CHI.
Conclusion: These results suggest that interruption of cART started during PHI has a significant, albeit modest negative impact on CD4 cell recovery on cART resumption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403722 | PMC |
http://dx.doi.org/10.1186/s12879-015-0892-1 | DOI Listing |
Lung
September 2025
The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Belfast BT9 7BL, UK.
Introduction: Rhinovirus (RV) is the leading cause of exacerbations of lung disease. A sensory neuronal model, derived from human dental pulp stem cells and differentiated into peripheral neuronal equivalents (PNEs), was used to examine RV's effects on airway sensory nerves. We investigated whether RV can directly infect and alter PNEs or whether it exerts effects indirectly via the release of mediators from infected epithelial cells.
View Article and Find Full Text PDFImmunol Lett
September 2025
Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HUS Diagnostic Center, Clinical Microbiology, Helsinki University Hospital, Helsinki,
Background: COVID-19 is still a significant health concern worldwide. B cell responses to COVID-19 have been extensively studied in acute severe disease, but less so during extended follow-up or mild disease. Persisting immunological changes together with herpesvirus reactivations during acute COVID-19 have been suggested as contributing factors for post-acute sequelae of COVID-19 (PASC).
View Article and Find Full Text PDFVirology
September 2025
Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA. Electronic address:
To better understand the contribution of interferon-γ (IFN-γ) receptor signaling to vaccine-induced immunity, we employed A129 (IFN-α/β receptor-deficient) and AG129 (IFN-α/β/γ receptor-deficient) mouse models. AG129 mice induced comparable levels of virus-specific IgG after vaccination with influenza virus H5 hemagglutinin (HA) virus-like particles (VLPs). Vaccinated AG129 mice with HA VLPs exhibited impaired Th1-immune responses, lower hemagglutination inhibition (HAI) titers, increased susceptibility to virus infection, and lower survival rates following influenza virus (H5N1) challenge than vaccinated A129 mice.
View Article and Find Full Text PDFMed Sci Monit
September 2025
Departament of Virology, National Institute of Public Health, National Institute of Hygiene - National Research Institute, Warsaw, Poland.
BACKGROUND The SENTINEL influenza surveillance system has been used in Poland since 2004, incorporating both epidemiological and virological monitoring of influenza viruses. SENTINEL works in cooperation with general practitioners, 16 Voivodship Sanitary Epidemiological Stations (VSES), and the National Influenza Centre (NIC). NON-SENTINEL samples are collected from places that do not participate in the SENTINEL program.
View Article and Find Full Text PDFJ Am Acad Dermatol
September 2025
Sorbonne Université, Faculté de médecine, AP-HP, Service de Dermatologie et Allergologie, Hôpital Tenon, F75020 Paris, France; Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (Cimi- Paris), F75013 Paris, France. Electronic address: