Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Polyploidy has often been considered to confer plants a better adaptation to environmental stresses. Tetraploid citrus rootstocks are expected to have stronger stress tolerance than diploid. Plenty of doubled diploid citrus plants were exploited from diploid species for citrus rootstock improvement. However, limited metabolic and molecular information related to tetraploidization is currently available at a systemic biological level. This study aimed to evaluate the occurrence and extent of metabolic and transcriptional changes induced by tetraploidization in Ziyang xiangcheng (Citrus junos Sieb. ex Tanaka), which is a special citrus germplasm native to China and widely used as an iron deficiency tolerant citrus rootstock.

Results: Doubled diploid Ziyang xiangcheng has typical morphological and anatomical features such as shorter plant height, larger and thicker leaves, bigger stomata and lower stomatal density, compared to its diploid parent. GC-MS (Gas chromatography coupled to mass spectrometry) analysis revealed that tetraploidization has an activation effect on the accumulation of primary metabolites in leaves; many stress-related metabolites such as sucrose, proline and γ-aminobutyric acid (GABA) was remarkably up-regulated in doubled diploid. However, LC-QTOF-MS (Liquid chromatography quadrupole time-of-flight mass spectrometry) analysis demonstrated that tetraploidization has an inhibition effect on the accumulation of secondary metabolites in leaves; all the 33 flavones were down-regulated while all the 6 flavanones were up-regulated in 4x. By RNA-seq analysis, only 212 genes (0.8% of detected genes) are found significantly differentially expressed between 2x and 4x leaves. Notably, those genes were highly related to stress-response functions, including responses to salt stress, water and abscisic acid. Interestingly, the transcriptional divergence could not explain the metabolic changes, probably due to post-transcriptional regulation.

Conclusion: Taken together, tetraploidization induced considerable changes in leaf primary and secondary metabolite accumulation in Ziyang xiangcheng. However, the effect of tetraploidization on transcriptome is limited. Compared to diploid, higher expression level of stress related genes and higher content of stress related metabolites in doubled diploid could be beneficial for its stress tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374211PMC
http://dx.doi.org/10.1186/s12870-015-0450-4DOI Listing

Publication Analysis

Top Keywords

doubled diploid
20
ziyang xiangcheng
16
diploid
10
metabolic transcriptional
8
diploid citrus
8
citrus rootstock
8
stress tolerance
8
compared diploid
8
mass spectrometry
8
spectrometry analysis
8

Similar Publications

Whole genome duplication drives transcriptome reprogramming in response to drought in alfalfa.

Plant Cell Rep

September 2025

Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.

Genome doubling did not enhance drought tolerance in alfalfa, but may set the stage for long-term adaptation to drought through a novel transcriptional landscape. Whole genome duplication (WGD) has been shown to enhance stress tolerance in plants. Cultivated alfalfa is autotetraploid, but diploid wild relatives are important sources of genetic variation for breeding.

View Article and Find Full Text PDF

(1) Background: Polyploid fish are highly important in increasing fish production, improving fish quality, and breeding new varieties. The loach (), as a naturally polyploid fish, serves as an ideal biological model for investigating the mechanisms of chromosome doubling; (2) Methods: In this study, tetraploidization in diploid loach was induced by heat shock treatment, and, for the first time, the role of the key cell cycle gene (cyclin-dependent kinase 1) in chromosome doubling was investigated; (3) Results: The experimental results show that when eggs are fertilized for 20 min and then subjected to a 4 min heat shock treatment at 39-40 °C, this represents the optimal induction condition, resulting in a tetraploid rate of 44%. Meanwhile, the results of the knockout model (2n ) constructed using CRISPR/Cas9 showed that the absence of significantly increased the chromosome doubling efficiency of the loach.

View Article and Find Full Text PDF

In this study, GH19 chitinase (Chi) gene family was systematically identified and characterized using genomic assemblies from four cotton species: , , , and . A suite of analyses was performed, including genome-wide gene identification, physicochemical property characterization of the encoded proteins, subcellular localization prediction, phylogenetic reconstruction, chromosomal mapping, promoter cis-element analysis, and comprehensive expression profiling using transcriptomic data and qRT-PCR (including tissue-specific expression, hormone treatments, and infection assays). A total of 107 GH19 genes were identified across the four species (35 in , 37 in , 19 in , and 16 in ).

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) is a highly heterogeneous primary malignant tumor of the biliary tract. Intrahepatic and extrahepatic cholangiocytes originate from different sources, resulting in significant clinical, epidemiological, molecular, and genetic heterogeneity. Globally, the incidence and mortality rates of CCA are generally increasing, highlighting the need for more foundational research to support advances in clinical diagnosis and treatment.

View Article and Find Full Text PDF

The repeat content and heterozygosity rate of a target genome are important factors in determining the feasibility of achieving a complete telomere-to-telomere assembly. The mathematical relationship between the required coverage and read length for the purpose of unique reconstruction remains unexplored for diploid genomes. We investigate the information-theoretic conditions that the given set of sequencing reads must satisfy to achieve the complete reconstruction of the true sequence of a diploid genome up to switch errors.

View Article and Find Full Text PDF