Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The methods currently available to deliver functional labels and drugs to the cell cytosol are inefficient and this constitutes a major obstacle to cell biology (delivery of sensors and imaging probes) and therapy (drug access to the cell internal machinery). As cell membranes are impermeable to most molecular cargos, viral peptides have been used to bolster their internalisation through endocytosis and help their release to the cytosol by bursting the endosomal vesicles. However, conflicting results have been reported on the extent of the cytosolic delivery achieved. To evaluate their potential, we used gold nanoparticles as model cargos and systematically assessed how the functionalisation of their surface by either or both of the viral peptides TAT and HA2 influenced their intracellular delivery. We evaluated the number of gold nanoparticles present in cells after internalisation using photothermal microscopy and their subcellular localisation by electron microscopy. While their uptake increased when the TAT and/or HA2 viral peptides were present on their surface, we did not observe a significant cytosolic delivery of the gold nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383524PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121683PLOS

Publication Analysis

Top Keywords

gold nanoparticles
16
viral peptides
12
tat ha2
8
cytosolic delivery
8
ha2 facilitate
4
facilitate cellular
4
cellular uptake
4
gold
4
uptake gold
4
nanoparticles
4

Similar Publications

Development of smartphone-based AIE fluorescence-quenching immunochromatographic sensors for the detection of illicit drugs in various complex sample matrices.

Anal Bioanal Chem

September 2025

GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.

Illicit drug abuse poses a significant global threat to public health and social security, highlighting the urgent need for rapid, sensitive, and versatile detection technologies. To address the limitations of traditional chromatographic techniques-such as high costs and slow response times-and the drawbacks of conventional immunochromatographic sensors (ICS), including low sensitivity and non-intuitive signal outputs, a fluorescence-quenching ICS (FQICS) was developed. This sensor leverages fluorescence resonance energy transfer (FRET) between aggregation-induced emission fluorescent microspheres (AIEFMs) and gold nanoparticles (AuNPs).

View Article and Find Full Text PDF

The development of antiviral nanotherapeutics remains a formidable challenge due to the structural diversity and rapid evolution of viral surface glycoconjugates. Here, we report a rationally engineered multivalent Galectin-1 (Gal-1) nanoplatform based on 13-nm gold nanoparticles (AuNPs) for high-affinity glycan targeting and therapeutic inhibition of influenza virus. By leveraging site-specific conjugation and molecular orientation control, the AuNP/Gal-1 nanocomplex maximizes the exposure of carbohydrate recognition domains (CRDs) while preserving Gal-1's tertiary structure, as confirmed by molecular dynamics simulations and spectroscopic analyses.

View Article and Find Full Text PDF

Rational Hapten Design for the Immunochromatographic Assay of Yohimbine, an Emerging Adulterant in Food.

J Agric Food Chem

September 2025

Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.

Adulterated yohimbine (YHB) in food poses a risk to public health, making it imperative to develop fast and sensitive detection methods. In this study, computational-chemistry-based prediction was employed to design YHB haptens for generating the high-affinity monoclonal antibody Yohi-4A7, which exhibited an optimal half-inhibitory concentration (IC) of 1.69 ng/mL against YHB.

View Article and Find Full Text PDF

Electroactive bacteria (EAB) hold great promise for the development of electrochemical biosensors given their unique ability to transfer electrons extracellularly via specialized pathways, a process termed extracellular electron transfer (EET). Ongoing research aims to overcome current limitations and fully harness the potential of EABs for high-performance biosensing applications. Herein, we report the fabrication of an electrochemical microsensor based on biomineralized electroactive bacteria, specifically MR-1.

View Article and Find Full Text PDF

Background: Another approach to improve the dose conformity is to use charged particles like protons instead of the conventional X- and γ-rays. Protons exhibit a specific depth-dose distribution which allows to achieve a more targeted dose deposition and a significant sparing of healthy tissue behind the tumor. In particular, proton therapy has, therefore, become a routinely prescribed treatment for tumors located close to sensitive structures.

View Article and Find Full Text PDF