98%
921
2 minutes
20
Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00705-015-2384-4 | DOI Listing |
Funct Integr Genomics
September 2025
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.
View Article and Find Full Text PDFBiology (Basel)
August 2025
State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, (Hübner) and (JE Smith), along with the larval endoparasitoid (Haliday) to address the question.
View Article and Find Full Text PDFBMC Plant Biol
September 2025
Nuclear Institute for Agriculture and Biology College (NIAB-C), Faisalabad, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, 45650, Pakistan.
Background: Escalating global temperatures pose an ongoing threat to cotton production by disrupting essential morphological, physiological, and metabolic processes during early plant development. These early stages are critical for crop establishment, yet the genetic basis of heat tolerance at this phase remains insufficiently characterized. Therefore, advancing our understanding of early-stage responses is essential for the development of heat-tolerant genotypes.
View Article and Find Full Text PDFPlants (Basel)
August 2025
Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Organisms, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China.
RNA polymerase II (Pol II) has been shown to participate in various biological processes in plants, but its function in response to abiotic stress in cotton remains unclear. This study aimed to elucidate the role of the third-largest subunit of Pol II (NRPB3) in the response of cotton to drought and salt stress through molecular biology and physiological methods. Real-time fluorescence quantitative PCR was used to analyze the expression pattern of in roots, stems, leaves, and cotyledons and to detect changes in its expression under drought, NaCl, and ABA treatments.
View Article and Find Full Text PDFPlants (Basel)
August 2025
College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China.
Hemp stalk, a widely available agricultural waste, is an ideal eco-friendly raw material for biochar production. Carbonization experiments were conducted as a novel approach for the scalable and value-added utilization of hemp stalk under oxygen-exclusion conditions. The effects of feedstock types- (KS), spp.
View Article and Find Full Text PDF