Non-invasive estimation of skin thickness from hyperspectral imaging and validation using echography.

Comput Biol Med

Applied Physics Laboratory, The Johns Hopkins University, MD, USA; School of Medicine, The Johns Hopkins University, MD, USA; Department of Computer Science, The Johns Hopkins University, MD, USA.

Published: February 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The skin is the largest organ and is subject to the greatest exposure to outside elements throughout one׳s lifetime. Current data by the American Academy of Dermatology suggests that approximately ten people die each hour worldwide due to skin related conditions. Cancers such as melanoma are growths that originate in the epidermis. Therefore, an accurate and non-invasive method to estimate skin constitutive elements can play an important clinical role in detecting the early onset of skin tumors. It can also serve as a valuable tool for research and development in cosmetics and pharmaceuticals in general.

Methods: In our prior work, we developed a method that combined a physics-based model of human skin with machine learning and Hyperspectral imaging to non-invasively estimate physiological skin parameters, including melanosomes, collagen, oxygen saturation, and blood volume. In this work, we extend that model to also estimate skin thickness. Moreover, for the first time, we develop a protocol to test our methodology for skin thickness estimation using Ultrasound to acquire a gold standard dataset.

Results: We tested our methodology for skin thickness estimation on a dataset of 48 Hyperspectral signatures obtained in vivo from six patients under IRB at Johns Hopkins Hospital. We found mean absolute errors on the order of the Ultrasound resolution (i.e., our gold standard).

Discussion: This is the first study of its kind to validate skin thickness estimates using a gold standard. Our preliminary results constitute a proof-of-concept that hyperspectral-based methods can accurately and non-invasively estimate skin thickness in clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2014.12.010DOI Listing

Publication Analysis

Top Keywords

skin thickness
24
skin
12
estimate skin
12
hyperspectral imaging
8
non-invasively estimate
8
methodology skin
8
thickness estimation
8
gold standard
8
thickness
6
non-invasive estimation
4

Similar Publications

5-Aminolevulinic acid-mediated photodynamic therapy improves scar healing of laryngeal wounds in rats.

Lasers Med Sci

September 2025

Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China.

To evaluated the efficacy of photodynamic therapy (PDT) in improving laryngeal mucosal wound scar healing in vivo and investigated its underlying mechanisms. Laryngeal mucosal wounds were induced in Sprague-Dawley rats. Two weeks post-injury, PDT was administered via intraperitoneal injection of 100 mg/kg 5-aminolevulinic acid (5-ALA) and 635-nm red laser irradiation at varying energy doses (15, 30, and 45 J/cm²).

View Article and Find Full Text PDF

An 8-week feeding trial was conducted to assess the effects of hydrolyzed feather meal (HFM) as a fish meal replacement on the growth performance, flesh quality, skin color, and intestinal microbiota of yellow catfish (). Five isonitrogen (44% crude protein) and isolipidic (8.5% crude lipid) diets were formulated with varying levels of HFM at 0% (FM, control), 2.

View Article and Find Full Text PDF

Homeostasis and thermoregulation depend on the interplay of the hair and skin. Maternal heat stress in late gestation triggers postnatal hair and skin adaptations in daughters and granddaughters. Herein, we investigated the transgenerational effects of late-gestation heat stress on the hair and skin of the great-granddaughters.

View Article and Find Full Text PDF

Background: Chronic nonspecific low back pain (CNSLBP) is associated with thoracolumbar fascia (TLF) dysfunction. However, the structural effects of Gua Sha, a Traditional Chinese Medicine technique, remain unclear. This study aimed to explore the acute and short-term effects of Gua Sha therapy on TLF thickness, pain intensity, and related physiological parameters in patients with CNSLBP.

View Article and Find Full Text PDF

Characterization of skeletal muscle contraction using a flexible and wearable ultrasonic sensor.

Prog Mol Biol Transl Sci

September 2025

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada. Electronic address:

Monitoring skeletal muscle contraction provides valuable information about the muscle mechanical properties, which can be helpful in various biomedical applications. This chapter presents a single-element flexible and wearable ultrasonic sensor (WUS) developed by our research group and its application for continuously monitoring and characterizing skeletal muscle contraction. The WUS is made from a 110-µm thick polyvinylidene fluoride piezoelectric polymer film.

View Article and Find Full Text PDF