98%
921
2 minutes
20
The upconversion luminescence (UCL) of rare earth (RE) ions doped nanomaterials has attracted extensive interest because of its wide and great potential applications. However, the lower UCL efficiency is still an obstacle for real applications. Photonic modulation is a novel way to improve the efficiency of UCL. In this work, NaGd(WO4)2:Yb(3+)/Tm(3+) inverse opal photonic crystals (IOPCs) were fabricated through the polymethylmethacrylate (PMMA) template and the modification of the IOPC structure on the emission spectra and dynamics of Tm(3+) ions was systemically studied. It is interesting to observe that in the IOPCs, the high-order UCL (1)D2-(3)H6/(3)F4 was relatively enhanced. At the same time, the local thermal effect induced by laser irradiation was suppressed. Furthermore, the overall intensity ratio of visible UCL to near-infrared (NIR) down-conversion luminescence (DCL) was 2.8-8 times improved than that of the grinded reference (REF) and independent of the photonic stop band (PSB). The studies on UCL dynamics indicated that the nonradiative transition rate of Tm(3+) was considerably suppressed. The facts above indicated that in the IOPCs the UCL efficiency of Tm(3+) was largely improved due to the periodic macroporous structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4nr05688d | DOI Listing |
Phys Chem Chem Phys
September 2025
School of Materials Science and Engineering, Changchun University of Science and Technology Changchun, 130022, Jilin, People's Republic of China.
The synergistic effect of various ions with optical properties is an important method to regulate the Er ion upconversion luminescence process. However, the energy processes between them are complicated and difficult to separate, and it is challenging to clarify the results of each process when multiple ions are co-doped. Herein, a series of NaYF:Er were synthesized by the low-temperature combustion method, and the luminescence color of Er ions was modulated by doping Yb ions and Tm ions.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector- 81, Punjab, 140306, India. Electronic address:
Background: Iron (Fe) is an essential micronutrient for plant growth, but the conventional DTPA soil analysis method for detecting available iron has notable limitations, requiring advanced instruments and lengthy preparation time. Developing a more affordable, user-friendly, and efficient method for iron detection in soil could greatly improve crop nutrition management. Here, a facile nanoscopic method was developed to quantify available Fe ions in the soil by forming a luminescence quenching complex in chelation with bathophenanthroline disulphonic acid disodium salt (Fe/BPDS complex).
View Article and Find Full Text PDFLuminescence
September 2025
Department of Computational and Applied Mechanics, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
Rare-earth ions (REIs), especially trivalent lanthanides (Ln ), are central to photonic technologies due to sharp intra-4f transitions, long lifetimes, and host-insensitive emission. However, modeling REIs remains challenging due to localized 4f orbitals, strong electron correlation, and multiplet structures. This review summarizes atomistic modeling strategies combining quantum chemistry and machine learning (ML).
View Article and Find Full Text PDFAnal Chem
September 2025
Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
Despite the various advantages of upconversion nanoparticles (UCNPs), the paradoxes of high luminescence resonance energy transfer (LRET) efficiency and low quantum yield remain a bottleneck for broader sensing applications. Herein, novel sandwich-structured UCNPs (SWUCNPs, NaYbF:(30%Gd)@NaYbF:Er(2%)@NaYF) with a core-middle shell-outer shell structure were synthesized. The SWUCNPs maintained a high LRET efficiency by confining the luminescent center of Er in the middle shell.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
Developing a sensitive analysis of dufulin with high anti-interference performance remains challenging. Herein, a metal-organic framework (MOF)-encapsulated upconversion nanoparticle (UC) core-shell hybrid sensor (UC@CuMOF) was designed for the sensitive detection of dufulin. With the encapsulation of the CuMOF shell, the luminescence of UC under a 980 nm laser was strongly quenched by the shell through the photoinduced electron transfer effect.
View Article and Find Full Text PDF