98%
921
2 minutes
20
Acute myeloid leukemia (AML) is a malignant and aggressive disease not sensitive to chemotherapy. The dynamic interaction between AML cells and bone marrow (BM) microenvironment plays a critical role in response of this disease to chemotherapy. It is reported that mesenchymal stromal cells (MSC) are essential component of bone marrow microenvironment which affects the survival of AML cells. The aim of our research is to elucidate the mechanism of drug resistance of AML cells associated with MSC. We found that adhesion of AML cell lines U937, KG1a and primary AML cells to MSC inhibited cytotoxic drug-induced apoptosis. Western blot showed that c-Myc of AML cells cocultured with stroma was up-regulated. Treatment with 10058-F4, a small molecule inhibitor of MYC-MAX heterodimerization, or c-Myc siRNA significantly induced apoptosis. Western blot analysis further showed that inhibition of c-Myc induced expression of caspases-3, cleavage of PARP and reduced expression of Bcl-2, Bcl-xL and vascular endothelial growth factor (VEGF). Thus, we conclude that MSCs protected leukemia cells from apoptosis, at least in part, through c-Myc dependent mechanisms, and that c-Myc contributed to microenvironment-mediated drug resistance in AML. In summary, we declared that c-Myc is a potential therapeutic target for overcoming drug resistance in AML.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.leukres.2014.11.004 | DOI Listing |
Background: Angioimmunoblastic T-cell lymphoma (AITL) is a rare and aggressive form of peripheral T-cell lymphoma, accounting for 1 - 2% of non-Hodgkin lymphomas. Diagnosis is challenging, and there is no established standard first-line treatment. This case report highlights a rare progression from AITL to therapy-related acute myeloid leukemia (AML-pCT) following cytotoxic chemotherapy.
View Article and Find Full Text PDFBackground: This study aims to gain further insights into the characteristics of the rare subtype of acute myeloid leukemia (AML) with BCR∷ABL by analyzing laboratory detection results of various gene mutations, such as NPM1.
Methods: Laboratory detection results of multiple gene missense mutations, including NPM1, were analyzed in a case of primary AML with BCR∷ABL.
Results: The patient exhibited morphological features of acute leukemia in the bone marrow.
J Immunother Cancer
September 2025
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
Background: Patients with acute myeloid leukemia (AML) are often older, which brings challenges of endurance and persistent efficacy of autologous chimeric antigen receptor (CAR)-T cell therapies. Allogenic CAR-natural killer (NK) cell therapies may offer reduced toxicities and enhanced anti-leukemic potential against AML. CD33 CAR-NK cells have been investigated for AML therapy.
View Article and Find Full Text PDFBlood Adv
September 2025
Institut de Recherches Cliniques de Montreal - IRCM, Montreal, Quebec, Canada.
Acute myeloid leukemia (AML) with rearrangement of the mixed lineage leukemia gene express MLL-AF9 fusion protein, a transcription factor that impairs differentiation and drives expansion of leukemic cells. We report here that the zinc finger protein GFI1 together with the histone methyltransferase LSD1 occupies the promoter and regulates expression of the lncRNA ELDR in the MLL-r AML cell line THP-1. Forced ELDR overexpression enhanced the growth inhibition of an LSD1i/ATRA combination treatment and reduced the capacity of these cells to generate leukemia in xenografts, leading to a longer leukemia-free survival.
View Article and Find Full Text PDFBlood Adv
September 2025
Zhongnan Hospital of Wuhan University, Wuhan, China.
The role of inflammation in the regulation of acute myeloid leukemia (AML) and stressed hematopoiesis is significant, though the molecular mechanisms are not fully understood. Here, we found that mesenchymal stromal cells (MSCs) had dysregulated expression of the inflammatory cytokine S100A8 in AML. Upregulating S100A8 in MSCs increased the proliferation of AML cells in vitro.
View Article and Find Full Text PDF