Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, populations of honey bees and other pollinators have been reported to be in decline worldwide. A number of stressors have been identified as potential contributing factors, including the extensive prophylactic use of neonicotinoid insecticides, which are highly toxic to bees, in agriculture. While multiple routes of exposure to these systemic insecticides have been documented for honey bees, contamination from puddle water has not been investigated. In this study, we used a multi-residue method based on LC-MS/MS to analyze samples of puddle water taken in the field during the planting of treated corn and one month later. If honey bees were to collect and drink water from these puddles, our results showed that they would be exposed to various agricultural pesticides. All water samples collected from corn fields were contaminated with at least one neonicotinoid compound, although most contained more than one systemic insecticide. Concentrations of neonicotinoids were higher in early spring, indicating that emission and drifting of contaminated dust during sowing raises contamination levels of puddles. Although the overall average acute risk of drinking water from puddles was relatively low, concentrations of neonicotinoids ranged from 0.01 to 63 µg/L and were sufficient to potentially elicit a wide array of sublethal effects in individuals and colony alike. Our results also suggest that risk assessment of honey bee water resources underestimates the foragers' exposure and consequently miscalculates the risk. In fact, our data shows that honey bees and native pollinators are facing unprecedented cumulative exposure to these insecticides from combined residues in pollen, nectar and water. These findings not only document the impact of this route of exposure for honey bees, they also have implications for the cultivation of a wide variety of crops for which the extensive use of neonicotinoids is currently promoted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249843PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108443PLOS

Publication Analysis

Top Keywords

honey bees
24
water
8
puddle water
8
water puddles
8
concentrations neonicotinoids
8
honey
7
bees
7
neonicotinoid-contaminated puddles
4
puddles water
4
water represent
4

Similar Publications

The diamide insecticide cyantraniliprole (CYA) and the triazole fungicide difenoconazole (DIF) are frequently co-detected in bee-related matrices. However, the interactive effects of these compounds on honey bee (Apis mellifera L.) physiology remain insufficiently elucidated.

View Article and Find Full Text PDF

Varroa destructor infestation amplifies imidacloprid vulnerability in Apis mellifera.

Pestic Biochem Physiol

November 2025

Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China. Electronic address:

Honey bee health is affected by a variety of environmental factors, with Varroa destructor parasitism and pesticide exposure being important factors contributing to colony decline. In this study, we assessed the effects of V. destructor infestation in combination with imidacloprid exposure on honey bees.

View Article and Find Full Text PDF

Exploration of the Hemocyte Surfaceome of Apis mellifera by a Proteomic and Transcriptomic Approach.

Insect Biochem Mol Biol

September 2025

Laboratory of Molecular Entomology and Bee Pathology (L-MEB), Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium. Electronic address:

This study maps the surfaceome of Apis mellifera hemocytes, the protagonist cells in honey bee cellular immunity. The surfaceome, proteins expressed at the cell surface, is crucial as it determines how cells interact with their microenvironment. Through a combination of proteomic and transcriptomic analyses, 1142 genes encoding cell surface proteins were identified, revealing a high level of diversity.

View Article and Find Full Text PDF

Determination of neonicotinoids in honey and pollen with probabilistic risk assessment for humans and pollinators in South Korea.

Sci Total Environ

September 2025

Center for Climate and Carbon Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea. Electronic address:

Neonicotinoid insecticides have been identified as significant contributors to the decline of pollinators. To evaluate potential exposure of pollinators to neonicotinoids in South Korea, 79 honey samples and 27 pollen samples were obtained from agricultural, mountain, and urban areas. These samples were analyzed for 17 compounds, including neonicotinoids and their metabolites using liquid chromatography coupled with mass spectrometry.

View Article and Find Full Text PDF

Omics Insights Into the Effects of Highbush Blueberry and Cranberry Crop Agroecosystems on Honey Bee Health and Physiology.

Proteomics

September 2025

Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.

Honey bees (Apis mellifera) are vital pollinators in fruit-producing agroecosystems like highbush blueberry (HBB) and cranberry (CRA). However, their health is threatened by multiple interacting stressors, including pesticides, pathogens, and nutritional changes. We tested the hypothesis that distinct agricultural ecosystems-with different combinations of agrochemical exposure, pathogen loads, and floral resources-elicit ecosystem-specific, tissue-level molecular responses in honey bees.

View Article and Find Full Text PDF