Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mutations in the RNA-binding protein FUS/TLS (FUS) have been linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Although predominantly nuclear, this heterogenous nuclear ribonuclear protein (hnRNP) has multiple functions in RNA processing including intracellular trafficking. In ALS, mutant or wild-type (WT) FUS can form neuronal cytoplasmic inclusions. Asymmetric arginine methylation of FUS by the class 1 arginine methyltransferase, protein arginine methyltransferase 1 (PRMT1), regulates nucleocytoplasmic shuttling of FUS. In motor neurons of primary spinal cord cultures, redistribution of endogenous mouse and that of ectopically expressed WT or mutant human FUS to the cytoplasm led to nuclear depletion of PRMT1, abrogating methylation of its nuclear substrates. Specifically, hypomethylation of arginine 3 of histone 4 resulted in decreased acetylation of lysine 9/14 of histone 3 and transcriptional repression. Distribution of neuronal PRMT1 coincident with FUS also was detected in vivo in the spinal cord of FUS(R495X) transgenic mice. However, nuclear PRMT1 was not stable postmortem obviating meaningful evaluation of ALS autopsy cases. This study provides evidence for loss of PRMT1 function as a consequence of cytoplasmic accumulation of FUS in the pathogenesis of ALS, including changes in the histone code regulating gene transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291251PMC
http://dx.doi.org/10.1093/hmg/ddu494DOI Listing

Publication Analysis

Top Keywords

arginine methyltransferase
12
protein arginine
8
spinal cord
8
fus
7
nuclear
6
als
5
arginine
5
prmt1
5
cytoplasmic sequestration
4
sequestration fus/tls
4

Similar Publications

Introduction: Delayed wound healing remains a significant clinical challenge under diabetic conditions, characterized by chronic inflammation and impaired angiogenesis. Traditional treatments show limited efficacy, highlighting the urgent need for innovative therapeutic approaches.

Methods: This study investigated the therapeutic potential of exosomes derived from subcutaneous adipocytes (Adipo-EVs) using a diabetic mouse model.

View Article and Find Full Text PDF

PRMT5 encourages cell migration and metastasis of tongue squamous cell carcinoma through methylating ΔNp63α.

Cell Death Differ

September 2025

Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Southwest Bio-resources R&D Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China.

Tongue squamous cell carcinoma (TSCC) is a common oral malignancy prone to metastasis, whose underlying mechanism remains obscure. Here, we report the oncogenic roles of protein arginine methyltransferase 5 (PRMT5) in TSCC via inhibiting transcription factor ΔNp63α. We found that PRMT5 physically interacts with ΔNp63α, resulting in impairment of ΔNp63α-mediated transcriptional regulation.

View Article and Find Full Text PDF

Receptor-interacting protein kinase 1 (RIPK1) plays an essential role in regulating the necroptosis and apoptosis in cerebral ischemia-reperfusion (I/R) injury. However, the regulation of RIPK1 kinase activity after cerebral I/R injury remains largely unknown. In this study, we found the downregulation of protein arginine methyltransferase 1 (PRMT1) was induced by cerebral I/R injury, which negatively correlated with the activation of RIPK1.

View Article and Find Full Text PDF

Objective: The protein arginine methyltransferase 5 (PRMT5) is a type II PRMT that is responsible for the majority of symmetric dimethylarginine (SDMA) in eukaryotic cells. While PRMT5 is overexpressed in pancreatic ductal adenocarcinoma (PDAC), the SDMA expression patterns in PDAC tissues have not been examined. This study is aimed to characterize the SDMA expression patterns in PDAC cells and patient tissues.

View Article and Find Full Text PDF

Glia maturation factor-β deficiency improves insulin resistance by promoting CARM1-mediated lipid turnover.

Pharmacol Res

August 2025

Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated to Tongji University, School of Medicine, and Tongji Eye Institute, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, and The Center of Stem Cell Research, School of Medicine, Tongji University, Shanghai 2

Insulin resistance (IR) is a major factor for obesity-associated type 2 diabetes. The molecular mechanisms of IR and its systemic control remain poorly understood, and pharmacological drugs to ameliorate IR are an unmet need. So finding new therapeutic targets and drugs is important.

View Article and Find Full Text PDF