Publications by authors named "Sheeja Aravindan"

Objective: The protein arginine methyltransferase 5 (PRMT5) is a type II PRMT that is responsible for the majority of symmetric dimethylarginine (SDMA) in eukaryotic cells. While PRMT5 is overexpressed in pancreatic ductal adenocarcinoma (PDAC), the SDMA expression patterns in PDAC tissues have not been examined. This study is aimed to characterize the SDMA expression patterns in PDAC cells and patient tissues.

View Article and Find Full Text PDF

Neuroblastoma is the most common extracranial solid tumor in children and comprises one-tenth of all childhood cancer deaths. The current clinical therapy for this deadly disease is multimodal, involving an with alternating regimens of high-dose chemotherapeutic drugs and load reduction surgery; a with more intensive chemotherapy, radiotherapy, and stem cell transplant; and a with immunotherapy and immune-activating cytokine treatment. Despite such intensive treatment, children with neuroblastoma have unacceptable life quality and survival, warranting preventive measures to regulate the cellular functions that orchestrate tumor progression, therapy resistance, metastasis, and tumor relapse/recurrence.

View Article and Find Full Text PDF
Article Synopsis
  • * The study found higher proportions of CD4+ T cells in women’s tumor and lymph node samples, while CD8+ T cells were more prevalent in their uninvolved colon compared to men.
  • * Differential gene expression related to immune functions was observed in women, suggesting that these immune system disparities may explain the survival advantages seen in female CRC patients.
View Article and Find Full Text PDF

Host factors play critical roles in SARS-CoV-2 infection-associated pathology and the severity of COVID-19. In this study, we systematically analyzed the roles of SARS-CoV-2-induced host factors, doublecortin-like kinase 1 (DCLK1), and S100A9 in viral pathogenesis. In autopsied subjects with COVID-19 and pre-existing chronic liver disease, we observed high levels of DCLK1 and S100A9 expression and immunosuppressive (DCLK1S100A9CD206) M2-like macrophages and N2-like neutrophils in lungs and livers.

View Article and Find Full Text PDF

Clinical management of gynecological cancer begins by optimal debulking with first-line platinum-based chemotherapy. However, in ~80% patients, ovarian cancer will recur and is lethal. Prognostic gene signature panel identifying platinum-resistance enables better patient stratification for precision therapy.

View Article and Find Full Text PDF

Cluster of differentiation 73 (CD73), a cell surface enzyme that catalyzes adenosine monophosphate (AMP) breakdown to adenosine, is differentially expressed in cancers and has prognostic significance. We investigated its expression profile in neuroblastoma (NB), its association with NB clinical outcomes, and its influence in the regulation of cancer stem cells' (CSCs) stemness maintenance. RNA-Seq data mining (22 independent study cohorts, total n = 3836) indicated that high CD73 can predict good NB prognosis.

View Article and Find Full Text PDF

Neuroblastoma (NB) progression is branded with hematogenous metastasis and frequent relapses. Despite intensive multimodal clinical therapy, outcomes for patients with progressive disease remain poor, with negligible long-term survival. Therefore, understanding the acquired molecular rearrangements in NB cells with therapy pressure and developing improved therapeutic strategies is a critical need to improve the outcomes for high-risk NB patients.

View Article and Find Full Text PDF

Rab GTPases are essentially molecular switches. They serve as master regulators in intracellular membrane trafficking from the formation and transport of vesicles at the originating organelle to its fusion to the membrane at the target organelle. Their functions are diversified and each has their specific subcellular location.

View Article and Find Full Text PDF

Introduction: Neuroblastoma (NB) is the prime cancer of infancy, and accounts for 9% of pediatric cancer deaths. While children diagnosed with clinically stable NB experience a complete cure, those with high-risk disease (HR-NB) do not recover, despite intensive therapeutic strategies. Development of novel and effective targeted therapies is needed to counter disease progression, and to benefit long-term survival of children with HR-NB.

View Article and Find Full Text PDF

High-risk neuroblastoma (HR-NB) is branded with hematogenous metastasis, relapses, and dismal long-term survival. Intensification of consolidation therapy with tandem/triple autologous stem cell (SC) rescue (with bone marrow [BM]/peripheral blood [PB] CD34 selection) after myeloablative chemotherapy has improved long-term survival. However, the benefit is limited by the indication of NB cells in CD34 PBSCs, CD34 expression in NB cells, and the risk of reinfusing NB cancer stem cells (NB CSCs) that could lead to post-transplant relapse.

View Article and Find Full Text PDF

Neuroblastoma (NB) deriving from neural crest cells is the most common extra-cranial solid cancer at infancy. NB originates within the peripheral sympathetic ganglia in adrenal medulla and along the midline of the body. Clinically, NB exhibits significant heterogeneity stretching from spontaneous regression to rapid progression to therapy resistance.

View Article and Find Full Text PDF

Neuroblastoma (NB) is the most common cancer of infancy and accounts for nearly one tenth of pediatric cancer deaths. This mortality rate has been attributed to the > 50% frequency of relapse despite intensive, multimodal clinical therapy in patients with progressive NB. Given the disease's heterogeneity and developed resistance, attaining a cure after relapse of progressive NB is highly challenging.

View Article and Find Full Text PDF
Article Synopsis
  • Most high-risk neuroblastomas often relapse after initial therapy due to genetic and molecular changes in cells resistant to treatment.
  • Researchers found a significant loss of RD3, a key gene, is linked to advanced disease stages and poorer outcomes in neuroblastoma patients.
  • The study demonstrated that RD3 loss plays an important role in the evolution of resistant tumors and suggested targeting RD3 might enhance treatment options for patients with progressive neuroblastoma.
View Article and Find Full Text PDF
Article Synopsis
  • There is a growing interest in marine-derived therapies, especially from seaweeds, for treating cancer, showcasing significant clinical advancements.
  • Researchers identified three promising seaweed polyphenol drug candidates (SW-PD) that show potent anti-cancer properties linked to their antioxidant activities.
  • The study revealed that SW-PD treatments effectively reduce oncogenic burden in radiation-resistant pancreatic cancer cells, offering potential as adjuvants in treatment strategies.
View Article and Find Full Text PDF

Background: MYCN amplification directly correlates with the clinical course of neuroblastoma and poor patient survival, and serves as the most critical negative prognostic marker. Although fluorescence in situ hybridization (FISH) remains the gold standard for clinical diagnosis of MYCN status in neuroblastoma, its limitations warrant the identification of rapid, reliable, less technically challenging, and inexpensive alternate approaches.

Methods: In the present study, we examined the concordance of droplet digital PCR (ddPCR, in combination with immunohistochemistry, IHC) with FISH for MYCN detection in a panel of formalin-fixed paraffin-embedded (FFPE) human neuroblastoma samples.

View Article and Find Full Text PDF

The 195-amino-acid-long human Retinal Degeneration Protein 3 (RD3) is critical in the regulation of guanylate cyclase (GC) signaling and photoreceptor cell survival. Recently, we identified significant loss of RD3 in high-risk neuroblastoma and the influential role of RD3 in tumor progression. However, the functional characterization of RD3 in tumor systems has been hampered by the dearth of information on its localization in normal tissue and by the lack of antibodies suitable for staining FFPE tissue, primarily due to the inaccessibility of the epitopes.

View Article and Find Full Text PDF

Therapy-resistant pancreatic cancer (PC) cells play a crucial role in tumor relapse, recurrence, and metastasis. Recently, we showed the anti-PC potential of an array of seaweed polyphenols and identified efficient drug deliverables. Herein, we investigated the benefit of one such deliverable, Hormophysa triquerta polyphenol (HT-EA), in regulating the dissemination physiognomy of therapy-resistant PC cells in vitro,and residual PC in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Concerns about high-energy radiation causing tumors in astronauts and cancer patients underscore the need to understand how radiation transforms normal tissue.
  • Researchers studied C57BL/6 mice to examine how different types of radiation (high-energy particle vs. low LET gamma radiation) affect gene expression in major organs.
  • A key discovery was the tissue-independent activation of the TAL2 gene following high-energy radiation, suggesting it could serve as a biomarker for radiation exposure and emphasizing the role of various oncotargets in tissue-specific tumor development.
View Article and Find Full Text PDF

Background: Circulating miRNAs have momentous clinical relevance as prognostic biomarkers and in the progression of solid tumors. Recognizing novel candidates of neuroblastoma-specific circulating miRNAs would allow us to identify potential prognostic biomarkers that could predict the switch from favorable to high-risk metastatic neuroblastoma (HR-NB).

Results: Utilizing mouse models of favorable and HR-NB and whole miRnome profiling, we identified high serum levels of 34 and low levels of 46 miRNAs in animals with HR-NB.

View Article and Find Full Text PDF

Introduction: Therapy-associated onset of stemness-maintenance in surviving tumor-cells dictates tumor relapse/recurrence. Recently, we recognized the anti-pancreatic cancer (PC) potential of seaweed polyphenol manifolds and narrowed down three superior drug-deliverables that could serve as adjuvants and benefit PC cure. Utilizing the PC- cancer stem cells (PC-CSCs) grown ex vivo and mouse model of residual-PC, we investigated the benefits of seaweed polyphenols in regulating stemness-maintenance.

View Article and Find Full Text PDF

Clinical outcomes for high-risk neuroblastoma patients remains poor, with only 40-50% 5-Year overall survival (OS) and <10% long-term survival. The ongoing acquisition of genetic/molecular rearrangements in undifferentiated neural crest cells may endorse neuroblastoma progression. This study recognized the loss of Retinal Degeneration protein 3, RD3 in aggressive neuroblastoma, and identified its influence in better clinical outcomes and defined its novel metastasis suppressor function.

View Article and Find Full Text PDF

Background: Determining the driving factors and molecular flow-through that define the switch from favorable to aggressive high-risk disease is critical to the betterment of neuroblastoma cure.

Methods: In this study, we examined the cytogenetic and tumorigenic physiognomies of distinct population of metastatic site- derived aggressive cells (MSDACs) from high-risk tumors, and showed the influence of acquired genetic rearrangements on poor patient outcomes.

Results: Karyotyping in SH-SY5Y and MSDACs revealed trisomy of 1q, with additional non-random chromosomal rearrangements on 1q32, 8p23, 9q34, 15q24, 22q13 (additions), and 7q32 (deletion).

View Article and Find Full Text PDF