Eight types of stem cells in the life cycle of the moss Physcomitrella patens.

Curr Opin Plant Biol

National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8585, Japan; Department of Basic Biology, Graduate School of Advanced Studies, Okazaki 444-8585, Japan. Electronic address:

Published: February 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stem cells self-renew and produce cells that differentiate to become the source of the plant body. The moss Physcomitrella patens forms eight types of stem cells during its life cycle and serves as a useful model in which to explore the evolution of such cells. The common ancestor of land plants is inferred to have been haplontic and to have formed stem cells only in the gametophyte generation. A single stem cell would have been maintained in the ancestral gametophyte meristem, as occurs in extant basal land plants. During land plant evolution, stem cells diverged in the gametophyte generation to form different types of body parts, including the protonema and rhizoid filaments, leafy-shoot and thalloid gametophores, and gametangia formed in moss. A simplex meristem with a single stem cell was acquired in the sporophyte generation early in land plant evolution. Subsequently, sporophyte stem cells became multiple in the meristem and were elaborated further in seed plant lineages, although the evolutionary origin of niche cells, which maintain stem cells is unknown. Comparisons of gene regulatory networks are expected to give insights into the general mechanisms of stem cell formation and maintenance in land plants and provide information about their evolution. P. patens develops at least seven types of simplex meristem in the gametophyte and at least one type in the sporophyte generation and is a good material for regulatory network comparisons. In this review, we summarize recently revealed molecular mechanisms of stem cell initiation and maintenance in the moss.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbi.2013.10.007DOI Listing

Publication Analysis

Top Keywords

stem cells
28
stem cell
16
land plants
12
cells
10
stem
10
types stem
8
cells life
8
life cycle
8
moss physcomitrella
8
physcomitrella patens
8

Similar Publications

Immunomodulatory Roles of Tonsil-Derived Mesenchymal Stem Cells.

Crit Rev Immunol

January 2025

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.

Stemming from human immune organs, tonsil-derived mesenchymal stem cells (TMSCs) hold unique strengths in differentiation potential and immune regulatory functions. These characteristics make them valuable for therapeutic applications, particularly in regenerative medicine and autoimmune disease treatment, as they can modulate immune responses and promote tissue repair. Their ability to interact with various cell types and secrete a range of bioactive molecules further enhances their role in orchestrating healing processes, making them a promising avenue for innovative therapies aimed at restoring balance in the immune system and facilitating recovery from injury or disease.

View Article and Find Full Text PDF

Nanomedicine-Mediated Therapies to Target Cancer Stem Cells: An Emerging Technology.

Crit Rev Ther Drug Carrier Syst

January 2025

Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.

Cancer stem cells (CSCs) are a category of cancer cells endowed with the ability to renew themselves, undergo unregulated growth, and exhibit a differentiation capacity akin to that of normal stem cells. CSCs have been linked with tumor metastasis and cancer recurrence due to their ability to elude immune monitoring. As a result, targeting CSCs specifically may improve the efficacy of cancer therapy.

View Article and Find Full Text PDF

The role of inflammation in the regulation of acute myeloid leukemia (AML) and stressed hematopoiesis is significant, though the molecular mechanisms are not fully understood. Here, we found that mesenchymal stromal cells (MSCs) had dysregulated expression of the inflammatory cytokine S100A8 in AML. Upregulating S100A8 in MSCs increased the proliferation of AML cells in vitro.

View Article and Find Full Text PDF

Purpose: To evaluate visual outcomes after bacterial keratitis (BK) and identify predictive factors for poor prognosis at a tertiary referral center in Southern California.

Methods: This is a cross-sectional retrospective review of patients' medical records with culture-positive BK at University of California Los Angeles from January 1, 2014, to December 31, 2019. Main outcome measure was change in best-corrected visual acuity (BCVA) at 12 weeks posttreatment.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a rare lung disease caused by hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in a subset of mesenchymal lung cells. Histopathologically, LAM lesions have been described as immature smooth muscle-like cells positive for the immature melanocytic marker HMB45/PMEL/gp100 and phosphorylated ribosomal protein S6 (pS6). Advances in single cell sequencing (scRNA-seq) technology allowed us to group LAM cells according to their expression of cancer stem cell (CSC) genes and identify three clusters: a high CSC-like state (SLS), an intermediate state, and a low CSC-like inflammatory state (IS).

View Article and Find Full Text PDF