Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

PACE4 plays an important role in the progression of prostate cancer and is an attractive target for the development of novel inhibitor-based tumor therapies. We previously reported the design and synthesis of a novel, potent, and relatively selective PACE4 inhibitor known as a Multi-Leu (ML) peptide. In the present work, we examined the ML peptide through detailed structure-activity relationship studies. A variety of ML-peptide analogues modified at the P8-P5 positions with leucine isomers (Nle, DLeu, and DNle) or substituted at the P1 position with arginine mimetics were tested for their inhibitory activity, specificity, stability, and antiproliferative effect. By incorporating d isomers at the P8 position or a decarboxylated arginine mimetic, we obtained analogues with an improved stability profile and excellent antiproliferative properties. The DLeu or DNle residue also has improved specificity toward PACE4, whereas specificity was reduced for a peptide modified with the arginine mimetic, such as 4-amidinobenzylamide.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm401457nDOI Listing

Publication Analysis

Top Keywords

design synthesis
8
structure-activity relationship
8
relationship studies
8
pace4 inhibitor
8
dleu dnle
8
arginine mimetic
8
synthesis structure-activity
4
studies potent
4
pace4
4
potent pace4
4

Similar Publications

Molecular Engineering Empowers Phenanthraquinone Organic Cathodes with Exceptional Cycling Stability for Lithium- and Aqueous Zinc-Ion Batteries.

Adv Sci (Weinh)

September 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.

Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.

View Article and Find Full Text PDF

Design of Z-scheme WSSe-XS (X = Zr and Hf) heterostructures as photocatalysts for efficient solar water splitting.

Phys Chem Chem Phys

September 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.

Transition metal dichalcogenides (TMDs) have been extensively studied as efficient photocatalysts for water splitting. However, the utilization efficiency of photogenerated carriers remains a major limitation for their practical applications. An effective approach to address this issue is the construction of Z-scheme heterostructures.

View Article and Find Full Text PDF

Globular proteins as functional-mechanical materials: a multiscale perspective on design, processing, and applications.

Mater Horiz

September 2025

MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.

Globular proteins, traditionally regarded as non-structural biomolecules due to the limited load-bearing capacity in their monomeric states, are increasingly recognized as valuable building blocks for functional-mechanical materials. Their inherent bioactivity, chemical versatility, and structural tunability enable the design of materials that combine biological functionality with tailored mechanical performance. This review highlights recent advances in engineering globular proteins-spanning natural systems (serum albumins, enzymes, milk globulins, silk sericin, and soy protein isolates) to recombinant architectures including tandem-repeat proteins-into functional-mechanical platforms.

View Article and Find Full Text PDF

The transition to a net-zero carbon economy hinges on the development of sustainable, efficient, and economically viable energy technologies. Here, we present a green, electricity-free auto-combustion synthesis of a multifunctional FeNi@MnO@C electrocatalyst, demonstrating outstanding performance for OER, HER, OWS, UOR, UOS, and OWS in alkaline seawater with a required potential of 1.45, 0.

View Article and Find Full Text PDF

Background And Hypotheses: Sexual minority youth are at increased risk for psychotic experiences, potentially due to identity-related difficulties. We hypothesized that sexual minority youth would report greater identity difficulties, and that these difficulties would be associated with heightened suspiciousness in daily life. Finally, we examined whether these associations differ between sexual minority and heterosexual adolescents.

View Article and Find Full Text PDF