98%
921
2 minutes
20
Acute mountain sickness (AMS) is an illness that affects many individuals at altitudes above 2,400 m (8,000 ft) resulting in decreased performance. Models that provide quantitative estimates of AMS risk are expanding, but predictive genetic models for AMS susceptibility are still under investigation. Thirty-four male U.S. Army Soldier volunteers were exposed to baseline, 3,000 m, 3,500 m, or 4,500 m altitude conditions in a hypobaric chamber and evaluated for onset of AMS symptoms. In addition, mice were evaluated at extreme hypoxia conditions equivalent to 7,600 m. Real-time polymerase chain reaction hypoxia response array was used to identify 15 genes that were activated in Soldiers and 46 genes that were activated in mice. We identified angiopoietin-like 4 (ANGPTL4) as a gene that is significantly activated in response to hypoxia (5.8-fold upregulated at 4,500 m in humans). The role of ANGPTL4 in high-altitude response has not been explored. Pretreatment of mice with fenofibrate, an ANGPTL4-activating pharmaceutical, had a considerable effect on overall hypoxia response gene expression and resulted in significantly decreased cerebral edema following exposure to hypoxia. Activation of ANGPTL4 may protect against cerebral edema by inhibiting vascular endothelial growth factor and therefore serve as a potential target for AMS prevention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7205/MILMED-D-13-00185 | DOI Listing |
Beilstein J Org Chem
September 2025
School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
Intelligent controlled-release drug delivery systems that are responsive to various external stimuli have garnered significant interest from researchers and have broad applications in the biomedical field. Aromatic macrocycles, including calixarenes and pillararenes, are considered ideal candidates for the construction of supramolecular drug delivery systems because of their simple synthesis, ease of modification, electron-rich and hydrophobic cavities, and highly selective molecular recognition. In recent years, numerous supramolecular drug delivery systems utilizing aromatic macrocycles have been developed.
View Article and Find Full Text PDFEnviron Int
September 2025
State Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Sciences, Northeastern University, Shenyang 110004, China; School of Environment, Hangzhou Institute for Advanced Study, Univ
Exposure to nanoplastics (NPs), a pervasive environmental pollutant, presents potential health risks. Pulmonary exposure to NPs has been shown to disrupt both pulmonary metabolic status and immune homeostasis, leading to concerns about their impact on respiratory health and systemic well-being. However, the underlying linkage and mechanisms remain elusive.
View Article and Find Full Text PDFJ Biophotonics
September 2025
Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.
Macrophages (MΦs) are integral cellular components responsible for immune response and tissue homeostasis. Evaluation of their pro-inflammatory (M1) and anti-inflammatory (M2) polarization states, along with their metabolic profiles, typically conducted via flow cytometry, is crucial for assessing the immune status of an organism. Traditional flow cytometry relies on extrinsic fluorescent labels, which may interfere with cellular function.
View Article and Find Full Text PDFSci China Life Sci
September 2025
State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Labora
Histone arginine methylation by protein arginine methyltransferases (PRMTs) is crucial for transcriptional regulation and is implicated in cancers. Despite their therapeutic potential, some PRMTs present challenges as drug targets due to their context-dependent activities. Here, we demonstrate that hypoxia triggers the rapid condensation of PRMT2, which is essential for its histone H3R8 asymmetric dimethylation (H3R8me2a) activity.
View Article and Find Full Text PDFPflugers Arch
September 2025
Department of Science, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
Hypoxia has been extensively studied as a stressor which pushes human bodily systems to responses and adaptations. Nevertheless, a few evidence exist onto constituent trains of motor unit action potential, despite recent advancements which allow to decompose surface electromyographic signals. This study aimed to investigate motor unit properties from noninvasive approaches during maximal isometric exercise in normobaric hypoxia.
View Article and Find Full Text PDF