98%
921
2 minutes
20
Collective laser coupling of the fiber array in the inertial confinement fusion (ICF) laser driver based on the concept of fiber amplification network (FAN) is researched. The feasible parameter space is given for laser coupling of the fundamental, second and third harmonic waves by neglecting the influence of the frequency conversion on the beam quality under the assumption of beam quality factor conservation. Third harmonic laser coupling is preferred due to its lower output energy requirement from a single fiber amplifier. For coplanar fiber array, the energy requirement is around 0.4 J with an effective mode field diameter of around 500 μm while maintaining the fundamental mode operation which is more than one order of magnitude higher than what can be achieved with state-of-the-art technology. Novel waveguide structure needs to be developed to enlarge the fundamental mode size while mitigating the catastrophic self-focusing effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.016494 | DOI Listing |
Langmuir
September 2025
School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China.
Optical manipulation techniques have been widely applied in the biomedical field. However, the key issues limiting the efficiency of optical manipulation techniques are the weak driving force of optical scattering and the small working range of optical gradient forces. The optothermal Marangoni convection enables effective control of flow fields through optical means, and particle manipulation based on this mechanism offers advantages such as a wide working range, strong driving force, and high flexibility.
View Article and Find Full Text PDFJ Sep Sci
September 2025
Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities.
View Article and Find Full Text PDFLangmuir
September 2025
College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, P. R. China.
The regulation of droplet dynamics based on external electric fields and bioinspired functional surfaces has widespread applications in various fields. However, research on the coupling of these two factors to enhance oil-water separation efficiency is urgently needed. In this study, laser-induced and solvent treatment techniques were coupled to assemble a micronano setal and bioinspired beetle elytra textured substrate with the lotus effect, A "top conductive, bottom insulating" Desert beetle elytra micronano tuft composite texture (DBE) biomimetic superhydrophobic surface was fabricated.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Delaware, Department of Physics and Astronomy, Newark, Delaware 19716, USA.
Ultrafast light-driven strongly correlated antiferromagnetic insulators, such as prototypical NiO with a large Mott energy gap ≃4 eV, have recently attracted experimental attention using photons of both subgap [H. Qiu et al., Nat.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Weizmann Institute of Science, Department of Physics of Complex Systems, Rehovot 761001, Israel.
The coupling of lasers plays an important role in a variety of research activities, from generating high-power lasers to investigating out-of-equilibrium coupled systems. This Letter presents our investigations of Hermitian coupling in arrays of lasers, where it is possible to control both the amplitude and phase of the coupling and generate artificial gauge fields. The Hermitian coupling is demonstrated in three laser array geometries: a square array of 100 lasers with controlled laser coupling for obtaining continuous control over the phase-locked state, a triangular array of 130 lasers with controlled chirality of the lasers, and a ring array of eight lasers with a controlled topological charge.
View Article and Find Full Text PDF