Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The phytohormone abscisic acid (ABA) plays a key role in the plant response to drought stress. Hence, ABA-dependent gene transcription and ion transport is regulated by a variety of protein kinases and phosphatases. However, the nature of the membrane-delimited ABA signal transduction steps remains largely unknown. To gain insight into plasma membrane-bound ABA signaling, we identified sterol-dependent proteins associated with detergent resistant membranes from Arabidopsis thaliana mesophyll cells. Among those, we detected the central ABA signaling phosphatase ABI1 (abscisic-acid insensitive 1) and the calcium-dependent protein kinase 21 (CPK21). Using fluorescence microscopy, we found these proteins to localize in membrane nanodomains, as observed by colocalization with the nanodomain marker remorin Arabidopsis thaliana remorin 1.3 (AtRem 1.3). After transient coexpression, CPK21 interacted with SLAH3 [slow anion channel 1 (SLAC1) homolog 3] and activated this anion channel. Upon CPK21 stimulation, SLAH3 exhibited the hallmark properties of S-type anion channels. Coexpression of SLAH3/CPK21 with ABI1, however, prevented proper nanodomain localization of the SLAH3/CPK21 protein complex, and as a result anion channel activation failed. FRET studies revealed enhanced interaction of SLAH3 and CPK21 within the plasma membrane in response to ABA and thus confirmed our initial observations. Interestingly, the ABA-induced SLAH3/CPK21 interaction was modulated by ABI1 and the ABA receptor RCAR1/PYL9 [regulatory components of ABA receptor 1/PYR1 (pyrabactin resistance 1)-like protein 9]. We therefore propose that ABA signaling via inhibition of ABI1 modulates the apparent association of a signaling and transport complex within membrane domains that is necessary for phosphorylation and activation of the S-type anion channel SLAH3 by CPK21.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657796PMC
http://dx.doi.org/10.1073/pnas.1211667110DOI Listing

Publication Analysis

Top Keywords

anion channel
20
aba signaling
16
aba
9
channel slah3
8
arabidopsis thaliana
8
s-type anion
8
slah3 cpk21
8
aba receptor
8
anion
6
signaling
5

Similar Publications

The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).

View Article and Find Full Text PDF

Surfactant-enhanced spontaneous imbibition is a proven method of enhancing oil recovery from shale reservoirs. However, a significant knowledge gap concerning the impact of clay minerals on surfactant-enhanced imbibition in shale reservoirs remains. Therefore, this study first analyzed the mineral composition and pore structure of the shale reservoirs.

View Article and Find Full Text PDF

Unveiling Ion-Transport Dynamics in 2D Nanofluidic Anion-Selective Membranes toward Osmotic Energy Harvesting.

Nano Lett

September 2025

State Key Laboratory of Materials Low-Carbon Recycling, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China.

Two-dimensional (2D) nanofluidic architectures with nanoconfined interlayer channels and excess surface charges have revolutionized membrane-based reverse electrodialysis systems, demonstrating highly efficient osmotic energy collection through strong electrostatic screening of electric double layer (EDL). However, the ion-transport dynamics in 2D nanofluidic anion-selective membranes (2D-NAMs) still remain unexplored. Here, we combine density functional theory and molecular dynamics (MD) simulations to systematically explore ion transport in the 2D-NAMs.

View Article and Find Full Text PDF

Background: After spinal cord injury (SCI), pro-inflammatory microglia accumulate and impede axonal regeneration. We explored whether secreted protein acidic and rich in cysteine (Sparc) restrains microglial inflammation and fosters neurite outgrowth.

Methods: Mouse microglial BV2 cells were polarized to a pro-inflammatory phenotype with lipopolysaccharides (LPSs).

View Article and Find Full Text PDF

[Inhibition of ferroptosis alleviates acute kidney injury caused by diquat in zebrafish].

Nan Fang Yi Ke Da Xue Xue Bao

August 2025

Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China.

Objectives: To investigate the role of ferroptosis in diquat-induced acute kidney injury (AKI) and its molecular mechanisms.

Methods: Transgenic zebrafish models with Tg (Eco.Tshb:EGFP) labeling of the renal tubules and Tg (lyz:dsRed2) labeling of the neutrophils were both divided into control group, gentamicin (positive control) group, diquat poisoning group, ferroptosis inhibitor group.

View Article and Find Full Text PDF