Carnivorous plants such as the Venus flytrap Dionaea muscipula survive in nutrient-poor habitats by attracting and consuming animals. Upon deflection of the touch-sensitive trigger hairs, the trap closes instantly. Panicking prey repeatedly collides with trigger hairs, which activate the endocrine system: mechano- and chemosensors translate the information on the prey's nature, size, and activity into jasmonate-dependent lytic enzyme secretion.
View Article and Find Full Text PDFAll plants are electrically excitable, but only few are known to fire a well-defined, all-or-nothing action potential (AP). The Venus flytrap Dionaea muscipula displays APs with an extraordinarily high firing frequency and speed, enabling the capture organ of this carnivorous plant to catch small animals as fast as flies. The number of APs triggered by the prey is counted and serves as the basis for decisions within the flytrap's hunting cycle.
View Article and Find Full Text PDFThe Venus flytrap Dionaea muscipula estimates prey nutrient content by counting trigger hair contacts initiating action potentials (APs) and calcium waves traveling all over the trap. A first AP is associated with a subcritical rise in cytosolic calcium concentration, but when the second AP arrives in time, calcium levels pass the threshold required for fast trap closure. Consequently, memory function and decision-making are timed via a calcium clock.
View Article and Find Full Text PDFSince the 19 century, it has been known that the carnivorous Venus flytrap is electrically excitable. Nevertheless, the mechanism and the molecular entities of the flytrap action potential (AP) remain unknown. When entering the electrically excitable stage, the trap expressed a characteristic inventory of ion transporters, among which the increase in glutamate receptor GLR3.
View Article and Find Full Text PDFPlants do not have neurons but operate transmembrane ion channels and can get electrical excited by physical and chemical clues. Among them the Venus flytrap is characterized by its peculiar hapto-electric signaling. When insects collide with trigger hairs emerging the trap inner surface, the mechanical stimulus within the mechanosensory organ is translated into a calcium signal and an action potential (AP).
View Article and Find Full Text PDFThe carnivorous plant Dionaea muscipula harbors multicellular trigger hairs designed to sense mechanical stimuli upon contact with animal prey. At the base of the trigger hair, mechanosensation is transduced into an all-or-nothing action potential (AP) that spreads all over the trap, ultimately leading to trap closure and prey capture. To reveal the molecular basis for the unique functional repertoire of this mechanoresponsive plant structure, we determined the transcriptome of D.
View Article and Find Full Text PDFMost plants grow and develop by taking up nutrients from the soil while continuously under threat from foraging animals. Carnivorous plants have turned the tables by capturing and consuming nutrient-rich animal prey, enabling them to thrive in nutrient-poor soil. To better understand the evolution of botanical carnivory, we compared the draft genome of the Venus flytrap (Dionaea muscipula) with that of its aquatic sister, the waterwheel plant Aldrovanda vesiculosa, and the sundew Drosera spatulata.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2017
The Venus flytrap captures insects and consumes their flesh. Prey contacting touch-sensitive hairs trigger traveling electrical waves. These action potentials (APs) cause rapid closure of the trap and activate secretory functions of glands, which cover its inner surface.
View Article and Find Full Text PDFThe present study was performed to elucidate the fate of carbon (C) and nitrogen (N) derived from protein of prey caught by carnivorous Dionaea muscipula. For this, traps were fed C/ N-glutamine (Gln). The release of CO was continuously monitored by isotope ratio infrared spectrometry.
View Article and Find Full Text PDFAlthough the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death-related genes/processes.
View Article and Find Full Text PDFCarnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2015
The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K(+) uptake system in the Venus flytrap.
View Article and Find Full Text PDFDuring the transition from water to land, plants had to cope with the loss of water through transpiration, the inevitable result of photosynthetic CO2 fixation on land [1, 2]. Control of transpiration became possible through the development of a new cell type: guard cells, which form stomata. In vascular plants, stomatal regulation is mediated by the stress hormone ABA, which triggers the opening of the SnR kinase OST1-activated anion channel SLAC1 [3, 4].
View Article and Find Full Text PDFCarnivorous Dionaea muscipula operates active snap traps for nutrient acquisition from prey; so what is the role of D. muscipula's reduced root system? We studied the capacity for nitrogen (N) acquisition via traps, and its effect on plant allometry; the capacity of roots to absorb NO₃(-), NH₄(+) and glutamine from the soil solution; and the fate and interaction of foliar- and root-acquired N. Feeding D.
View Article and Find Full Text PDFObjectives And Aim: This study was performed to analyse the effects of different sevoflurane concentrations on the incidence of epileptiform EEG activity during induction of anaesthesia in children in the clinical routine.
Background: It was suggested in the literature to use sevoflurane concentrations lower than 8% to avoid epileptiform activity during induction of anaesthesia in children.
Methods: 100 children (age: 4.
J Exp Bot
February 2014
Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2014
Predation plays a major role in energy and nutrient flow in the biological food chain. Plant carnivory has attracted much interest since Darwin's time, but many fundamental properties of the carnivorous lifestyle are largely unexplored. In particular, the chain of events leading from prey perception to its digestive utilization remains to be elucidated.
View Article and Find Full Text PDFBackground: Ammonium transporter (AMT/MEP/Rh) superfamily members mediate ammonium uptake and retrieval. This pivotal transport system is conserved among all living organisms. For plants, nitrogen represents a macronutrient available in the soil as ammonium, nitrate, and organic nitrogen compounds.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2013
The phytohormone abscisic acid (ABA) plays a key role in the plant response to drought stress. Hence, ABA-dependent gene transcription and ion transport is regulated by a variety of protein kinases and phosphatases. However, the nature of the membrane-delimited ABA signal transduction steps remains largely unknown.
View Article and Find Full Text PDFMol Cell Proteomics
November 2012
The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the proteins secreted during digestion.
View Article and Find Full Text PDFBackground: Sterols and Sphingolipids form lipid clusters in the plasma membranes of cell types throughout the animal and plant kingdoms. These lipid domains provide a medium for protein signaling complexes at the plasma membrane and are also observed to be principal regions of membrane contact at the inception of infection. We visualized different specific fluorescent lipophilic stains of the both sphingolipid enriched and non-sphingolipid enriched regions in the plasma membranes of live protoplasts of Arabidopsis thaliana.
View Article and Find Full Text PDF