Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ocean acidification, via an anthropogenic increase in seawater carbon dioxide (CO2 ), is potentially a major threat to coral reefs and other marine ecosystems. However, our understanding of how natural short-term diurnal CO2 variability in coral reefs influences longer term anthropogenic ocean acidification remains unclear. Here, we combine observed natural carbonate chemistry variability with future carbonate chemistry predictions for a coral reef flat in the Great Barrier Reef based on the RCP8.5 CO2 emissions scenario. Rather than observing a linear increase in reef flat partial pressure of CO2 (pCO2 ) in concert with rising atmospheric concentrations, the inclusion of in situ diurnal variability results in a highly nonlinear threefold amplification of the pCO2 signal by the end of the century. This significant nonlinear amplification of diurnal pCO2 variability occurs as a result of combining natural diurnal biological CO2 metabolism with long-term decreases in seawater buffer capacity, which occurs via increasing anthropogenic CO2 absorption by the ocean. Under the same benthic community composition, the amplification in the variability in pCO2 is likely to lead to exposure to mean maximum daily pCO2 levels of ca. 2100 μatm, with corrosive conditions with respect to aragonite by end-century at our study site. Minimum pCO2 levels will become lower relative to the mean offshore value (ca. threefold increase in the difference between offshore and minimum reef flat pCO2 ) by end-century, leading to a further increase in the pCO2 range that organisms are exposed to. The biological consequences of short-term exposure to these extreme CO2 conditions, coupled with elevated long-term mean CO2 conditions are currently unknown and future laboratory experiments will need to incorporate natural variability to test this. The amplification of pCO2 that we describe here is not unique to our study location, but will occur in all shallow coastal environments where high biological productivity drives large natural variability in carbonate chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.12154DOI Listing

Publication Analysis

Top Keywords

co2 conditions
12
carbonate chemistry
12
reef flat
12
co2
9
pco2
9
seawater buffer
8
buffer capacity
8
coral reef
8
ocean acidification
8
coral reefs
8

Similar Publications

Fluorine-oxygen dual sites engineered on carbon enable high efficiency in the cycloaddition of carbon dioxide: synergistic effect, density functional theory validation and kinetic modeling.

J Colloid Interface Sci

September 2025

School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China. Electronic address:

Fluorine (F)-doped carbon materials (FCMs) were one-pot synthesized and applied as the catalysts for the cycloaddition of carbon dioxide (CO) towards the cyclic carbonate for the first time. In this process, F dopants and oxygen (O)-containing groups on the carbon surface played a key role in enhancing the activity. The FCM synthesized at 500 °C (FCM-500) with 5.

View Article and Find Full Text PDF

Agricultural supply chains face significant challenges in achieving food security and sustainability, particularly due to climate change and waste production. Effectively managing these supply chains, especially in the context of uncertainties, is crucial for optimizing resource use and minimizing waste. This research develops a multi-objective optimization for designing a sustainable and responsive closed-loop agricultural supply chain network, focusing on jujube products under uncertain conditions.

View Article and Find Full Text PDF

Deep-sea hydrothermal vents are renowned for being among the most extreme environments on Earth. However, the mussel shells found in these vent sites demonstrate remarkable productivity, despite being subjected to high pressure as well as unusual levels of heavy metals, pH, temperature, CO, and sulphides. To comprehend how these mussels endure such extreme conditions, a systematic comparative study was conducted, focusing on the unique chemical composition, structural designs, and mechanical properties of hydrothermal vent mussels (Bathymodiolus aduloides) in comparison to shallow-water mussels (Mytilus edulis).

View Article and Find Full Text PDF

Wetlands play a crucial role in global greenhouse gas (GHG) dynamics, yet their response to climate change is not yet fully understood. Here, we investigate how increasing temperature and oxygen availability interact to regulate wetland GHG emissions through combined analysis of biogeochemical and functional gene measurements. We found distinct temperature-dependent shifts in carbon emission pathways, with CO emissions unexpectedly declining as temperature rose from 15 to 25 °C, while increasing consistently at higher temperatures (25-35 °C), reflecting a transition to more thermally-driven processes.

View Article and Find Full Text PDF

Exploring the synergy of CO nanobubbles and biochar as a hydroponic substrate for enhanced carbon and nutrient utilization with a comprehensive health risk assessment.

J Environ Manage

September 2025

Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan; Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, 10617, Taiwan; Science and Technology Research Institute for DE-Car

In this study, a deep-water culture (DWC) hydroponic system integrating carbon dioxide nanobubble (CNB) water and biochar (BC) was explored as a potential substrate for carbon and nutrient management. Lettuce seedlings were cultivated under varying substrates, including tap water (TW) and deionized water (DW) with and without CNB and BC at concentrations of 0.1 or 0.

View Article and Find Full Text PDF