Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The saliva, gastric and intestinal digestion of polysaccharide from Plantago asiatica L. seeds was investigated in vitro. It was found that salivary amylase had no effect on the polysaccharide; however, the polysaccharide was influenced in later gastrointestinal digestion. A steady decrease in molecular weight (M(w)) of the polysaccharide from 1903.1±93.0 to 4.7±0.2 kDa was observed as digestion time increased. Meanwhile, the reducing ends were increased from 0.157±0.009 to 0.622±0.026 mM, indicating the decrease of M(w) may due to the breakdown of glycosidic bonds. In addition, there was no monosaccharide released throughout the whole digestion period, suggesting that the gastrointestinal digestion did not result in a production of free monosaccharide. These results may provide some information on the digestion of polysaccharide from P. asiatica L. in vitro, and may contribute to the methods of studying the digestion of other carbohydrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2012.10.072DOI Listing

Publication Analysis

Top Keywords

digestion polysaccharide
12
saliva gastric
8
gastric intestinal
8
digestion
8
intestinal digestion
8
plantago asiatica
8
gastrointestinal digestion
8
polysaccharide
6
artificial simulated
4
simulated saliva
4

Similar Publications

The growing consumer interest in functional and health-oriented foods prompted the incorporation of tartary buckwheat sprout flour (TBSF) into food production. The addition of TBSF enhanced the nutritional value of noodles. Research has shown that as the proportion of TBSF increased, both the water absorption rate and thermal stability of the dough improved, while formation time decreased and dough aging was inhibited.

View Article and Find Full Text PDF

Flammulina velutipes is a major edible fungus with abundant yield and mature industrial production technology. Its main functional component, Flammulina velutipes polysaccharide, has huge development and utilization value. In light of the current uncertainty regarding the mechanisms by which Flammulina velutipes polysaccharides prevent colonic cell pyroptosis, the mechanisms of ultrasound-extracted Flammulina velutipes polysaccharide (FVPU2) in inhibiting colonic cell pyroptosis in mice were investigated, and compared with Flammulina velutipes polysaccharide extracted via hot water extraction (FVPH2).

View Article and Find Full Text PDF

Exploring the effect of Curdlan and xanthan on physicochemical properties and multiscale structure of rice starch during extrusion.

Food Res Int

November 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. Electronic address:

Hydrocolloids are utilized in starch-based foods for water-holding, thickening, and gelation, yet their molecular interactions with starch in extrusion systems remain underexplored; this study evaluates physicochemical and multiscale structural changes in extruded starch incorporating curdlan (CG) and xanthan (XG). Incorporation of CG and XG significantly counteracted the disruption of the multiscale structure of starch caused by the extrusion treatment, and increased the content of resistant starch. It reduced the content of rapidly digestible starch in extruded starch by 4.

View Article and Find Full Text PDF

Limosilactobacillus reuteri probiotics were encapsulated in Kudzu starch (KS) and Hemp protein (HP) complex coacervates (CC), followed by spray drying, to enhance their stability and boost their viability. The optimized conditions for CC consisted of a KS:HP ratio of 1:2 (w/w) and pH 5.0.

View Article and Find Full Text PDF

Quinoa protein-dextran conjugates as functional stabilizers for curcumin-loaded Nanoemulsions.

Food Res Int

November 2025

Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China. Electronic address:

This study employed high-pressure microfluidization (HPM) to facilitate the Maillard reaction between quinoa protein (QP) and dextran (DX), systematically examining the effects of various pressures on the conjugate's physicochemical properties. Fourier transform infrared spectroscopy confirmed the formation of QP-DX conjugates, characterized by a new peak at 1149 cm (covalent CN bond). Secondary and tertiary structure analyses revealed that HPM-assisted Maillard reaction partially unfolded QP molecules, enhancing conformational flexibility and interfacial properties.

View Article and Find Full Text PDF