98%
921
2 minutes
20
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that participate in the structural and functional maintenance of connective tissues under normal homeostasis. They also act as trophic mediators during tissue repair, generating bioactive molecules that help in tissue regeneration following injury. MSCs serve comparable roles in cases of malignancy and are becoming increasingly appreciated as critical components of the tumor microenvironment. MSCs home to developing tumors with great affinity, where they exacerbate cancer cell proliferation, motility, invasion and metastasis, foster angiogenesis, promote tumor desmoplasia and suppress anti-tumor immune responses. These multifaceted roles emerge as a product of reciprocal interactions occurring between MSCs and cancer cells and serve to alter the tumor milieu, setting into motion a dynamic co-evolution of both tumor and stromal tissues that favors tumor progression. Here, we summarize our current knowledge about the involvement of MSCs in cancer pathogenesis and review accumulating evidence that have placed them at the center of the pro-malignant tumor stroma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427236 | PMC |
http://dx.doi.org/10.4161/cam.20875 | DOI Listing |
Clin Oral Investig
September 2025
Department of Stomatology, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying, 257034, China.
Objective: Progesterone (PG) and its target, progesterone receptor (PGR), are important regulators in inflammatory diseases. This study aimed to investigate the specific role of PG in periodontitis and to elucidate the underlying mechanisms involving PGR.
Methods: Women with periodontitis, including 250 with PG deficiency, 250 with PG supplementation, and 245 controls (normal PG) were enrolled.
Nature
September 2025
Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
The human stomach features distinct, regionalized functionalities along the anterior-posterior axis. Historically, studies on stomach patterning have used animal models to identify the underlying principles. Recently, human pluripotent stem (hPS)-cell-based gastric organoids for modelling domain-specific development of the fundic and antral epithelium are emerging.
View Article and Find Full Text PDFUltrasound Med Biol
September 2025
State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China. Electronic address:
Objective: Diabetic foot ulcer (DFU) is a common and serious complication of diabetes, often leading to infection, amputation and poor quality of life. Bone marrow mesenchymal stem cells (BMSCs) have shown promise in treating chronic wounds, but their therapeutic efficacy is limited due to poor survival and low regenerative activity. Low-intensity pulsed ultrasound (LIUS), a non-invasive physical modality, has been shown to enhance the biological behavior of BMSCs.
View Article and Find Full Text PDFDev Cell
September 2025
Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK. Electronic address:
Lineage specification requires accurate interpretation of multiple signaling cues. However, how combinatorial signaling histories influence fate outcomes remains unclear. We combined single-cell transcriptomics, live-cell imaging, and mathematical modeling to explore how activin and bone morphogenetic protein 4 (BMP4) guide fate specification during human gastrulation.
View Article and Find Full Text PDFPhytomedicine
August 2025
Zhejiang Provincial Chinese Medicine Hospital (First affiliated hospital of Zhejiang Chinese Medical University), Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, 310053, China; Department of Orthopedics, Affiliated Hospital of Jiangxi University of Chinese Medicine, Jiangxi Un
Background: Osteoporotic osteoarthritis (OPOA), a distinct subtype of osteoarthritis (OA), has imposed a significant health and economic burden worldwide. However, mechanistic studies and therapeutic strategies for this disease remain in the exploratory stage.
Purpose: This study aimed to investigate the specific molecular mechanisms by which osteoporosis (OP) exacerbates OA progression through accelerated subchondral bone (SB) sclerosis and the potential of Jiawei Yanghe Decoction (JWYHD) in treating OPOA.