Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid-liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid-liquid phase separation can result in increased concentrations of gas-phase NO(3) and N(2)O(5) due to decreased particle uptake of N(2)O(5).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421221PMC
http://dx.doi.org/10.1073/pnas.1206414109DOI Listing

Publication Analysis

Top Keywords

liquid-liquid phase
24
atmospheric particles
16
phase separation
16
particles undergo
12
reveal atmospheric
8
undergo liquid-liquid
8
phase separations
8
real-world samples
8
atmospheric
7
particles
7

Similar Publications

A comprehensive understanding of the molecular mechanism underlying the Liquid-Liquid Phase Separation (LLPS) pathway of LCD-TDP43 remains a challenge in the context of its neuropathogenesis. The primary driving force behind the TDP-43 LLPS is the interplay of hydrophobic interactions reinforced by aromatic residues. This study presents a novel, convenient, sensitive, and probe-free approach using excitation-emission matrix (EEM) fluorescence to monitor the microenvironment of aromatic residues and π-π stacking interactions during different stages of the LLPS pathway.

View Article and Find Full Text PDF

Unveiling the role of biomolecular condensates in cellular function and cancer.

Adv Biol Regul

September 2025

Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic. Electronic address:

Biomolecular condensates (BMCs) are membrane-less organelles formed through liquid-liquid phase separation, primarily driven by multivalent interactions between scaffold and client molecules. These dynamic compartments enable cells to spatially and temporally organize biochemical reactions by locally concentrating specific biomolecules, thereby enhancing the frequency of productive molecular interactions and increasing reaction rates. BMCs are integral to normal cellular physiology, with well-characterized examples including the nucleolus and Cajal bodies.

View Article and Find Full Text PDF

Salicylic acid (SA), a long-characterized defense hormone, is increasingly recognized for its roles in plant growth and development. However, its involvement in mediating plant growth responses to environmental cues remains less understood. Here, we show that SA negatively affects thermomorphogenic growth in Arabidopsis thaliana.

View Article and Find Full Text PDF

ssDNA and ssRNA Promote Phase Condensation of SAMHD1.

Biochemistry

September 2025

Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States.

SAMHD1 (SAM domain and HD domain-containing protein 1) is a deoxynucleoside triphosphate triphosphohydrolase (dNTPase) with functions in viral restriction, R-loop resolution, DNA repair, telomere maintenance, ssRNA homeostasis, and regulation of self-nucleic acids. As a dNTPase, SAMHD1 functions as an allosterically activated tetramer, where binding of GTP to the A1 activator site of each monomer initiates dNTP-dependent tetramerization. cEM structures reveal that the nucleic-acid-related functions of SAMHD1 involve binding of guanine residues to the A1 site, leading to oligomeric forms that appear as beads-on-a-string on single-stranded RNA and DNA.

View Article and Find Full Text PDF

Phase separation of ERCC6L2-CtIP regulates the extent of DNA end resection.

Nat Cell Biol

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

The ataxia telangiectasia mutated (ATM) kinase orchestrates the early stages of DNA double-strand break repair by promoting hyperphosphorylation of CtIP, a key step in the initiation of DNA end resection. However, the regulatory mechanisms controlling resection extent remain incompletely understood. Here we identify ERCC6L2 as a key regulator of DNA end resection in response to ATM inhibition.

View Article and Find Full Text PDF