ssDNA and ssRNA Promote Phase Condensation of SAMHD1.

Biochemistry

Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SAMHD1 (SAM domain and HD domain-containing protein 1) is a deoxynucleoside triphosphate triphosphohydrolase (dNTPase) with functions in viral restriction, R-loop resolution, DNA repair, telomere maintenance, ssRNA homeostasis, and regulation of self-nucleic acids. As a dNTPase, SAMHD1 functions as an allosterically activated tetramer, where binding of GTP to the A1 activator site of each monomer initiates dNTP-dependent tetramerization. cEM structures reveal that the nucleic-acid-related functions of SAMHD1 involve binding of guanine residues to the A1 site, leading to oligomeric forms that appear as beads-on-a-string on single-stranded RNA and DNA. SAMHD1's cellular activities and known protein interactions involve liquid-liquid phase separation (LLPS), although there are no reports that SAMHD1 itself exhibits phase separation properties. The protein phase separation prediction algorithm MolPhase indicated an overall phase separation probability score of 0.65 and suggested that the amino terminal SAM domain and the disordered carboxyl terminus (CT) may promote phase separation. Although no phase separation behavior was observed in physiological buffer, in the presence of 9% PEG 2000 and ssDNA or ssRNA, SAMHD1 condensed into liquid-like droplets. These droplets were disrupted by deletion of the SAM or CT domains, showed fusion behavior, and were rapidly disrupted by the addition of A1 site ligands GTP, dGTP, and small-molecule inhibitors. We also observed that SAMHD1-ssDNA condensates within the nuclei of human cells in microinjection experiments, supporting a biological relevance for such complexes. LLPS by SAMHD1 could serve a regulatory role in cells and provide a new therapeutic target for the treatment of cancer and viral infections.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.5c00422DOI Listing

Publication Analysis

Top Keywords

phase separation
24
ssdna ssrna
8
promote phase
8
sam domain
8
phase
7
samhd1
7
separation
6
ssrna promote
4
phase condensation
4
condensation samhd1
4

Similar Publications

Background: The separation of structural isomers is always a challenging task for liquid chromatography because of their similar physicochemical property. Research has found that materials with regular microporous structures exhibit excellent isomer separation performance. However, as the most easily available chromatographic material, silica stationary phases with regular and small mesopore structure have not yet been prepared, and it remains to be confirmed whether narrow pores in silica materials have the enhancing effect on shape selectivity in the separation of structural isomers.

View Article and Find Full Text PDF

Indomethacin is a poorly soluble weak acid and a widely used model drug in enabling formulations. When using microdialysis for sampling of indomethacin from a buffer containing calcium, we observed the formation of nanoparticles of a poorly water-soluble indomethacin calcium salt. The nanoparticles were not detected during solubility experiments where filtration had been used to separate the solid phase because the nanoparticles were unusually small in size, less than 2 nm in diameter as determined by DLS.

View Article and Find Full Text PDF

A comprehensive understanding of the molecular mechanism underlying the Liquid-Liquid Phase Separation (LLPS) pathway of LCD-TDP43 remains a challenge in the context of its neuropathogenesis. The primary driving force behind the TDP-43 LLPS is the interplay of hydrophobic interactions reinforced by aromatic residues. This study presents a novel, convenient, sensitive, and probe-free approach using excitation-emission matrix (EEM) fluorescence to monitor the microenvironment of aromatic residues and π-π stacking interactions during different stages of the LLPS pathway.

View Article and Find Full Text PDF

Electrospun porous nanofibers for sustained drug delivery: Degradation-controlled release through architectural design.

Colloids Surf B Biointerfaces

September 2025

College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China. Electronic address:

Diclofenac sodium (DS), a non-steroidal anti-inflammatory drug used for treating inflammatory pain, has a short elimination half-life, which can lead to fluctuations in blood drug concentration. Therefore, developing sustained-release formulations is necessary to meet clinical needs. Biodegradable polymers exhibit excellent sustained-release properties and good biocompatibility, making them suitable for processing into nanofiber-based drug delivery systems via electrospinning technology.

View Article and Find Full Text PDF

This study investigates the phenomenon of mode repulsion in Lamb waves propagating through two coupled plates with an elastic interface. Using a spring-based coupling model and the Scaled Boundary Finite Element Method, the dispersion curves of the coupled system are analyzed under various interface conditions-weak coupling, sliding boundary, and perfect coupling. This research highlights how the mechanical stiffness of the interface influences the separation of modes and the emergence of repulsion regions.

View Article and Find Full Text PDF