98%
921
2 minutes
20
Strangles is an extremely contagious and sometimes deadly disease of the Equidae. The development of an effective vaccine should constitute an important asset to eradicate this worldwide infectious disease. In this work, we address the development of a mucosal vaccine by using a Supercritical Enhanced Atomization (SEA) spray-drying technique. Aqueous solutions containing the Streptococcus equi extracts and chitosan were converted into nanospheres with no use of organic solvents. The immune response in a mouse model showed that the nanospheres induced a well-balanced Th1 and Th2 response characterized by a unitary ratio between the concentrations of IgG2a and IgG1, together with IgA production. This strategy revealed to be an effective alternative for immunization against S. equi, and therefore, it may constitute a feasible option for production of a strangles vaccine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2012.07.005 | DOI Listing |
Infect Immun
September 2025
National Contagious Bovine Pleuropneumonia Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
Contagious bovine pleuropneumonia (CBPP), caused by subsp. (Mmm), is a devastating cattle disease with high morbidity and mortality, threatening cattle productivity in Sub-Saharan Africa and potentially in parts of Asia. Cross-border livestock trade increases the risk of CBPP introduction or reintroduction.
View Article and Find Full Text PDFFront Vet Sci
August 2025
College of Veterinary Medicine, China Agricultural University, Beijing, China.
Introduction: This study investigated the mucosal immunoadjuvant effects of Gynostemma Pentaphyllum Extract (Gynostemma P.E), the bioactive constituents of , against porcine epidemic diarrhea virus (PEDV).
Methods: Twenty-four mice were randomly divided into four groups: a negative control group (intranasal administration of antigen only), a Gynostemma P.
Front Vet Sci
August 2025
Laboratorio Avi-Mex, S. A. de C. V., Ciudad de Mexico, Mexico.
Introduction: The emergence of highly virulent strains of the porcine reproductive and respiratory syndrome virus has driven the need for new vaccines. This study evaluates the efficacy of an intranasal (IN) vaccine composed of a naturally attenuated PRRSV-2 isolate, compared to a commercially available intramuscularly administered (IM) PRRSV-1 vaccine, against a heterologous challenge with a highly virulent PRRSV-1 strain (R1).
Methods: Sixty-eight PRRSV-naïve pigs were divided into four groups: two non-vaccinated controls (NV/NCh, NV/Ch), one IM-vaccinated with a PRRSV-1 MLV (Por), and one intranasally (IN)-vaccinated with the PRRSV-2 vaccine (IL).
Front Immunol
September 2025
Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.
Innate-like T cells (ILT), including γδ T cells (Vδ2s), Natural Killer T cells (NKTs) and Mucosal-associated Invariant T cells (MAITs), integrate innate and adaptive immunity, playing important roles in homeostatic conditions as well as during infection or inflammation. ILT are present on both sides of the fetal-maternal interface, but our knowledge of their phenotypical and functional features in neonates is limited. Using spectral flow cytometry we characterized cord blood ILT in neonates born to healthy women and women living with HIV.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal. Electronic a
The increasing prevalence of respiratory disorders highlights the urgent need for effective mucosal vaccines that elicit targeted immune responses at pathogen entry sites. However, the advancement of mucosal vaccines is limited by challenges in antigen delivery and overcoming mucosal immune tolerance. In this study, we developed a gene delivery platform using chitosan functionalized with lactobionic acid (LA) to enhance targeting of antigen-presenting cells and to form stable DNA polyplexes with high transfection efficiency.
View Article and Find Full Text PDF