Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Super elongation complexes (SECs) contain two different transcription elongation factors, P-TEFb and ELL1/2, linked by the scaffolding protein AFF4 or AFF1. They stimulate the expression of both normal and disease-related genes, especially those of HIV or those involved in leukemogenesis. Among all SEC subunits, ELL2 is stoichiometrically limiting and uniquely regulated at the level of protein stability. Here we identify the RING domain protein Siah1, but not the homologous Siah2, as the E3 ubiquitin ligase for ELL2 polyubiquitination and proteasomal degradation. Siah1 cannot access and ubiquitinate ELL2 bound to AFF4, although, at high concentrations, it also degrades AFF4/1 to destroy SECs. Prostratin and HMBA, two well-studied activators of HIV transcription and latency, enhance ELL2 accumulation and SECs formation largely through decreasing Siah1 expression and ELL2 polyubiquitination. Given its importance in formation of SECs, the Siah1 ubiquitination pathway provides a fresh avenue for developing strategies to control disease-related transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3360964PMC
http://dx.doi.org/10.1016/j.molcel.2012.03.007DOI Listing

Publication Analysis

Top Keywords

ubiquitin ligase
8
super elongation
8
elongation complexes
8
ell2 polyubiquitination
8
ell2
6
siah1
5
ligase siah1
4
siah1 controls
4
controls ell2
4
ell2 stability
4

Similar Publications

S-nitrosylation of pVHL regulates β adrenergic receptor function.

Proc Natl Acad Sci U S A

September 2025

Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.

The β-adrenergic receptor (βAR), a prototype G protein-coupled receptor, controls cardiopulmonary function underpinning O delivery. Abundance of the βAR is canonically regulated by G protein-coupled receptor kinases and β-arrestins, but neither controls constitutive receptor levels, which are dependent on ambient O. Basal βAR expression is instead regulated by the prolyl hydroxylase/pVHL-E3 ubiquitin ligase system, explaining O responsivity.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) can re-active the immune response and induce a complete response in mismatch repair-deficient and microsatellite instability-high (dMMR/MSI-H) colorectal cancer (CRC). However, most CRCs exhibit proficient mismatch repair and microsatellite stable (pMMR/MSS) phenotypes with limited immunotherapy response because of sparse intratumoral CD8 T-lymphocyte infiltration. Cellular senescence has been reported to involve immune cell infiltration through a senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

The Skp2-Cks1 protein-protein interaction (PPI) within the SCF ubiquitin ligase acts as a co-receptor for phosphorylated CDK inhibitors-most prominently p27-relieving CDK inhibition and advancing the cell cycle, a dependency accentuated in RB-pathway-defective cancers. Crystallographic and cryo-EM analyses delineate a composite pocket formed by the Skp2 leucine-rich-repeat groove and the phosphate-recognition site of Cks1; Cks1-centered open-closed motions further influence druggability. Using HTRF/TR-FRET and AlphaScreen biochemistry, alongside cell-based target-engagement readouts in some studies, three small-molecule classes have emerged that disrupt this PPI: 1,3-diphenyl-pyrazines and triazolo[1,5-a]pyrimidines (lead E35) with low-micromolar potency, and "Skp2E3LI" compounds with micromolar cellular activity.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV) is a significant flavivirus that poses a threat to public health, as it induces encephalitis in humans and reproductive disorders in sows. We have recently identified that zinc finger protein 33B (ZNF33B) is required for JEV infection by CRISPR-based functional genomic screening, yet the precise functions and mechanisms are not fully comprehended. In this study, ZNF33B was found to be involved in JEV infection, wherein it bound with JEV RNA to enhance its stability during replication.

View Article and Find Full Text PDF

Snai2 is a transcription factor that inhibits the proliferation of cervical cancer cells and tumor growth. The expression of Snai2 inhibited the expression of β-catenin and impaired Wnt/β-catenin signaling pathway activity. The results of the RNA sequence in Snai2-overexpressing cervical cancer cells implied a strong correlation between Snai2 and TRIM31 with ubiquitin ligase activity.

View Article and Find Full Text PDF