Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The purpose of the present study was to assess the differentiation potential of adipose-derived stem cells (ASCs) into smooth muscle cells (SMCs) and their potential for promoting regeneration of smooth muscle for ureteral tissue engineering.

Methods: ASCs were isolated, proliferated, and identified in vitro. SMC differentiation was induced using SMC induction medium. Gene expression was evaluated by quantitative polymerase chain reaction, immunofluorescence, and Western blotting. Vessel extracellular matrix was obtained by a decellularization process. The induced cells were seeded onto vessel extracellular matrix for ureter reconstitution. Grafts were obtained for evolutionary histologic studies. Renal function and ureteral patency was evaluated by intravenous urography at 16 wk.

Results: Flow cytometry demonstrated that the ASCs expressed CD90, but did not express CD45 or CD34. After 6 wk of induction, upregulation of α-smooth muscle actin expression was determined by quantitative polymerase chain reaction, and smooth muscle myosin heavy chain expression was confirmed by immunofluorescence and Western blotting in the induced cells. Vessel extracellular matrix exhibited a nontoxic and bioactive effect on the induced cells. Histologically, stratified urothelium and organized muscle bundles were observed in the grafts at 16 wk. Intravenous urography demonstrated no ureteral stricture or hydroureteronephrosis.

Conclusions: These results have demonstrated that ASCs can be differentiated into SMCs and this potential promoted smooth muscle regeneration for ureteral tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2012.01.047DOI Listing

Publication Analysis

Top Keywords

smooth muscle
20
ureteral tissue
12
vessel extracellular
12
extracellular matrix
12
induced cells
12
adipose-derived stem
8
stem cells
8
regeneration smooth
8
muscle ureteral
8
tissue engineering
8

Similar Publications

Hirudin, a polypeptide extracted from medicinal leeches, has demonstrated potential in treating renal fibrosis. This study aimed to explore the underlying mechanisms by which Hirudin alleviates renal fibrosis. Renal fibrosis models were established using unilateral ureteral obstruction (UUO) surgery in rats and transforming growth factor-β (TGF-β)-induced HK-2 cells, followed by treatment with different concentrations of Hirudin.

View Article and Find Full Text PDF

Background: Tetrandrine (TET) demonstrates therapeutic potential for hypoxic pulmonary hypertension (HPH); however, its precise pharmacological mechanisms remain unclear. In this study, we aimed to investigate the effects of TET on pulmonary vascular remodeling (PVR) in HPH and elucidate the molecular pathways through which TET ameliorates HPH.

Methods: We established a rat model of HPH and evaluated the therapeutic effects of TET by measuring hemodynamic parameters, assessing right ventricular hypertrophy, and analyzing pathological changes in lung tissue.

View Article and Find Full Text PDF

Liver fibrosis, which eventually leads to cirrhosis, is characterized by excessive accumulation of type I collagen (COL1A), mainly derived from activated hepatic stellate cells (HSCs). Currently, there is no clinical treatments that can directly address this condition. The objectives of this study were to identify a compound that can suppress HSC activation and elucidate the molecular mechanism underlying its action.

View Article and Find Full Text PDF

Neuroinflammatory Consequences of Rhinovirus Infection in Human Epithelial and Neuronal Models.

Lung

September 2025

The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Belfast BT9 7BL, UK.

Introduction: Rhinovirus (RV) is the leading cause of exacerbations of lung disease. A sensory neuronal model, derived from human dental pulp stem cells and differentiated into peripheral neuronal equivalents (PNEs), was used to examine RV's effects on airway sensory nerves. We investigated whether RV can directly infect and alter PNEs or whether it exerts effects indirectly via the release of mediators from infected epithelial cells.

View Article and Find Full Text PDF

Background: Pulmonary neuroendocrine cells (PNECs) are specialized airway epithelial cells with dual sensory and secretory functions. They release bioactive mediators --including neuropeptides such as calcitonin gene-related peptide (CGRP) and gastrin-releasing peptide (GRP), and neurotransmitters such as 5-hydroxytryptamine (5-HT) and γ-aminobutyric acid (GABA) --that regulate airway smooth-muscle tone, mucus production, and immune responses. In chronic obstructive pulmonary disease (COPD), these PNEC-derived mediators contribute to airway inflammation, remodeling, and smooth-muscle dysfunction.

View Article and Find Full Text PDF