98%
921
2 minutes
20
Purpose: The first aim of this study is to investigate the feasibility of online autocontouring of tumor in low field MR images (0.2 and 0.5 T) by means of a phantom and simulation study for tumor-tracking in linac-MR systems. The second aim of this study is to develop an MR compatible, lung tumor motion phantom.
Methods: An autocontouring algorithm was developed to determine both the position and shape of a lung tumor from each intra fractional MR image. To initiate the algorithm, an expert user contours the tumor and its maximum anticipated range of motion (herein termed the Background) using pretreatment scan data. During treatment, the algorithm processes each intrafractional MR image and automatically contours the tumor. To evaluate this algorithm, the authors built a phantom that replicates the low field contrast parameters (proton density, T(1), T(2)) of lung tumors and healthy lung parenchyma. This phantom allows simulation of MR images with the expected lung tumor CNR at 0.2 and 0.5 T by using a single 3 T scanner. Dynamic bSSFP images (approximately 4 images per second) are acquired while the phantom undergoes a series of preprogrammed motions based on patient lung tumor motion data. These images are autocontoured off-line using our algorithm. The fidelity of autocontouring is assessed by comparing autocontoured tumor shape and its centroid position to the actual tumor shape and its position.
Results: The algorithm successfully contoured the shape of a moving tumor model from dynamic MR images acquired every 275 ms. Dice's coefficients of > 0.96 and > 0.93 are achieved in 0.5 and 0.2 T equivalent images, respectively. Also, the algorithm tracked tumor position during dynamic studies, with root mean squared error (RMSE) values of < 0.55 and < 0.92 mm for 0.5 and 0.2 T equivalent images, respectively. Autocontouring speed is approximately 5 ms for each image.
Conclusions: Dice's coefficients of > 0.96 and > 0.93 are achieved between autocontoured and real tumor shapes, and the position of a tumor can be tracked with RMSE values of < 0.55 and < 0.92 mm in 0.5 and 0.2 T equivalent images, respectively. These results demonstrate the feasibility of lung tumor autocontouring in low field MR images, and, by extension, intrafractional lung tumor tracking with our laboratory's linac-MR system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.3685578 | DOI Listing |
Pathol Res Pract
September 2025
Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China. Electronic address:
Our research aims to ascertain the value of precursor and outgrowth lepidic in aiding the confirmation of multiple lung adenocarcinomas as separate primary lung cancers (SPLC). A total of 151 patients with metachronous multiple invasive adenocarcinomas were included in this study. Driver mutation tests(at least five genes: EGFR, ALK, KRAS, BRAF, and ROS1) were conducted on 302 tumors collected from 151 patients.
View Article and Find Full Text PDFJCO Precis Oncol
September 2025
Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA.
Purpose: mutations are classically seen in non-small cell lung cancers (NSCLCs), and EGFR-directed inhibitors have changed the therapeutic landscape in patients with -mutated NSCLC. The real-world prevalence of -mutated ovarian cancers has not been previously described. We aim to determine the prevalence of pathogenic or likely pathogenic mutations in ovarian cancer and describe a case of -mutated metastatic ovarian cancer with a durable response to osimertinib, an EGFR-directed targeted therapy.
View Article and Find Full Text PDFJCO Precis Oncol
September 2025
Monica F. Chen, MD, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, Daniel Gomez, MD, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, and Helena A. Yu, MD, Division of Solid Tumor Oncology, Depart
J Bras Pneumol
September 2025
. Departamento de Pneumologia, Centro Hospitalar Universitário de São João, Porto, Portugal.
Objectives: The 9th edition of the Tumor, Node, Metastasis (TNM-9) lung cancer classification is set to replace the 8th edition (TNM-8) starting in 2025. Key updates include the splitting of the mediastinal nodal category N2 into single- and multiple-station involvement, as well as the classification of multiple extrathoracic metastatic lesions as involving a single organ system (M1c1) or multiple organ systems (M1c2). This study aimed to assess how the TNM-9 revisions affect the final staging of lung cancer patients and how these changes correlate with overall survival (OS).
View Article and Find Full Text PDFClin Cancer Res
September 2025
Amgen (United States), Thousand Oaks, CA, United States.
Purpose: Tarlatamab is a first-in-class, half-life extended bispecific T-cell engager (BiTE®) immunotherapy targeting delta-like ligand 3 (DLL3) currently approved for the treatment of adult patients with small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy. Here we report tarlatamab exposure-response relationships to inform dose selection in patients with SCLC.
Experimental Design: Pharmacokinetic data were correlated with therapeutic effect [exposure-response (ER) analyses] for efficacy and safety measures using pooled data from DeLLphi-300 and DeLLphi-301 studies.