Introduction: In the last decade, hybrid linear accelerator magnetic resonance imaging (Linac-MR) devices have evolved into FDA-cleared clinical tools, facilitating magnetic resonance guided radiotherapy (MRgRT). The addition of a magnetic field to radiation therapy has previously demonstrated dosimetric and electron effects regardless of magnetic field orientation.
Purpose: This study uses Monte Carlo simulations to investigate the importance and efficacy of the magnetic field design in mitigating surface dose enhancement in the Aurora-RT, focusing specifically on contaminant electrons, their origin, and energy spectrum.
Background: Stereotactic body radiotherapy (SBRT) is an evolving treatment for the local management of pancreatic cancer (PC). The main purpose of this study is to report our initial experience in terms of local control (LC) and toxicity for PC patients treated with SBRT.
Methods: We conducted a retrospective review of patients treated with SBRT using abdominal compression (AC) or an end-expiratory breath-holding (EEBH) technique.
To develop a 2D MR acceleration method utilizing principal component analysis (PCA) in a hybrid fashion for rapid real-time applications.Retrospective testing was performed on 10 lung, 10 liver and 10 prostate 3T MRI data sets for image quality and target contourability. Sampling of k-space is performed by acquiring central (low-frequency) data in every frame while the high-frequency data is incoherently undersampled such that all of k-space is acquired in a pre-determined number of frames.
View Article and Find Full Text PDFBackground: Magnetic resonance (MR) imaging devices have been integrated with medical linear accelerators (linac) in radiation therapy. Both perpendicular linac-MR (LMR-B⊥) and parallel (LMR-B∥) systems exist, where due to the MR's magnetic field dose can be perturbed in the patient. Dose perturbations from the electron return effect (ERE) and electron streaming effects (ESEs) are present in LMR-B⊥ systems, where a dose collimating effect has been observed in LMR-B∥ systems .
View Article and Find Full Text PDFBackground: The Alberta rotating biplanar linac-MR has a 0.5 T magnetic field parallel to the beamline. When developing a new linac-MR system, interactions of charged particles with the magnetic field necessitate careful consideration of skin dose and tissue interface effects.
View Article and Find Full Text PDFBackground: The world's first clinical 0.5 T inline rotating biplanar Linac-MR system is commissioned for clinical use. For reference dosimetry, unique features to device, including an SAD = 120 cm, bore clearance of 60 cm × 110 cm, as well as 0.
View Article and Find Full Text PDFPurpose: A rapid real-time 2D accelerated method was developed for magnetic resonance imaging (MRI) using principal component analysis (PCA) in the temporal domain. This method employs a moving window of previous dynamic frames to reconstruct the current, real-time frame within this window. This technique could be particularly useful in real-time tracking applications such as in MR-guided radiotherapy, where low latency real-time reconstructions are essential.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) provides a means to non-invasively investigate the neurological links with dyslexia, a learning disability that affects one's ability to read. Most previous brain MRI studies of dyslexia and reading skill have used structural or diffusion imaging to reveal regional brain abnormalities. However, volumetric and diffusion MRI lack specificity in their interpretation at the microstructural level.
View Article and Find Full Text PDFAccelerated MRI involves undersampling k-space, creating unwanted artifacts when reconstructing the data. While the strategy of incoherent k-space acquisition is proven for techniques such as compressed sensing, it may not be optimal for all techniques. This study compares the use of coherent low-resolution (coherent-LR) and incoherent undersampling phase-encoding for real-time 3D CNN image reconstruction.
View Article and Find Full Text PDFInvestigate 3D (spatial and temporal) convolutional neural networks (CNNs) for real-time on-the-fly magnetic resonance imaging (MRI) reconstruction. In particular, we investigated the applicability of training CNNs on a patient-by-patient basis for the purpose of lung tumor segmentation. Data were acquired with our 3 T Philips Achieva system.
View Article and Find Full Text PDFPurpose: Real-time tracking of lung tumors using magnetic resonance imaging (MRI) has been proposed as a potential strategy to mitigate the ill-effects of breathing motion in radiation therapy. Several autocontouring methods have been evaluated against a "gold standard" of a single human expert user. However, contours drawn by experts have inherent intra- and interobserver variations.
View Article and Find Full Text PDFPurpose: This work presents a real-time dynamic image reconstruction technique, which combines compressed sensing and principal component analysis (CS-PCA), to achieve real-time adaptive radiotherapy with the use of a linac-magnetic resonance imaging system.
Methods: Six retrospective fully sampled dynamic data sets of patients diagnosed with non-small-cell lung cancer were used to investigate the CS-PCA algorithm. Using a database of fully sampled k-space, principal components (PC's) were calculated to aid in the reconstruction of undersampled images.
IEEE Trans Biomed Eng
January 2018
Objective: A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need.
Methods: The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable.
Purpose: Hybrid magnetic resonance imaging and radiation therapy devices are capable of imaging in real-time to track intrafractional lung tumor motion during radiotherapy. Highly accelerated magnetic resonance (MR) imaging methods can potentially reduce system delay time and/or improves imaging spatial resolution, and provide flexibility in imaging parameters. Prior Data Assisted Compressed Sensing (PDACS) has previously been proposed as an acceleration method that combines the advantages of 2D compressed sensing and the KEYHOLE view-sharing technique.
View Article and Find Full Text PDFPurpose: To develop a neural-network based autocontouring algorithm for intrafractional lung-tumor tracking using Linac-MR and evaluate its performance with phantom and in-vivo MR images.
Methods: An autocontouring algorithm was developed to determine both the shape and position of a lung tumor from each intrafractional MR image. A pulse-coupled neural network was implemented in the algorithm for contrast improvement of the tumor region.
Myelin water imaging provides a novel strategy to assess myelin integrity and corresponding clinical relationships in psychosis, of particular relevance in frontal white matter regions. In the current study, T2 myelin water imaging was used to assess the myelin water fraction (MWF) signal from frontal areas in a sample of 58 individuals experiencing first-episode psychosis (FEP) and 44 healthy volunteers. No differences in frontal MWF were observed between FEP subjects and healthy volunteers; however, differences in normal patterns of associations between frontal MWF and age, education and IQ were seen.
View Article and Find Full Text PDFPurpose: Hybrid radiotherapy-MRI devices promise real time tracking of moving tumors to focus the radiation portals to the tumor during irradiation. This approach will benefit from the increased temporal resolution of MRI's data acquisition and reconstruction. In this work, the authors propose a novel spatial-temporal compressed sensing (CS) imaging strategy for the real time MRI--prior data assisted compressed sensing (PDACS), which aims to improve the image quality of the conventional CS without significantly increasing reconstruction times.
View Article and Find Full Text PDFPurpose: The first aim of this study is to investigate the feasibility of online autocontouring of tumor in low field MR images (0.2 and 0.5 T) by means of a phantom and simulation study for tumor-tracking in linac-MR systems.
View Article and Find Full Text PDF