98%
921
2 minutes
20
Purpose: Hybrid magnetic resonance imaging and radiation therapy devices are capable of imaging in real-time to track intrafractional lung tumor motion during radiotherapy. Highly accelerated magnetic resonance (MR) imaging methods can potentially reduce system delay time and/or improves imaging spatial resolution, and provide flexibility in imaging parameters. Prior Data Assisted Compressed Sensing (PDACS) has previously been proposed as an acceleration method that combines the advantages of 2D compressed sensing and the KEYHOLE view-sharing technique. However, as PDACS relies on prior data acquired at the beginning of a dynamic imaging sequence, decline in image quality occurs for longer duration scans due to drifts in MR signal. Novel sliding window-based techniques for refreshing prior data are proposed as a solution to this problem.
Methods: MR acceleration is performed by retrospective removal of data from the fully sampled sets. Six patients with lung tumors are scanned with a clinical 3 T MRI using a balanced steady-state free precession (bSSFP) sequence for 3 min at approximately 4 frames per second, for a total of 650 dynamics. A series of distinct pseudo-random patterns of partial k-space acquisition is generated such that, when combined with other dynamics within a sliding window of 100 dynamics, covers the entire k-space. The prior data in the sliding window are continuously refreshed to reduce the impact of MR signal drifts. We intended to demonstrate two different ways to utilize the sliding window data: a simple averaging method and a navigator-based method. These two sliding window methods are quantitatively compared against the original PDACS method using three metrics: artifact power, centroid displacement error, and Dice's coefficient. The study is repeated with pseudo 0.5 T images by adding complex, normally distributed noise with a standard deviation that reduces image SNR, relative to original 3 T images, by a factor of 6.
Results: Without sliding window implemented, PDACS-reconstructed dynamic datasets showed progressive increases in image artifact power as the 3 min scan progresses. With sliding windows implemented, this increase in artifact power is eliminated. Near the end of a 3 min scan at 3 T SNR and 5× acceleration, implementation of an averaging (navigator) sliding window method improves our metrics by the following ways: artifact power decreases from 0.065 without sliding window to 0.030 (0.031), centroid error decreases from 2.64 to 1.41 mm (1.28 mm), and Dice coefficient agreement increases from 0.860 to 0.912 (0.915). At pseudo 0.5 T SNR, the improvements in metrics are as follows: artifact power decreases from 0.110 without sliding window to 0.0897 (0.0985), centroid error decreases from 2.92 mm to 1.36 mm (1.32 mm), and Dice coefficient agreements increases from 0.851 to 0.894 (0.896).
Conclusions: In this work we demonstrated the negative impact of slow changes in MR signal for longer duration PDACS dynamic scans, namely increases in image artifact power and reductions of tumor tracking accuracy. We have also demonstrated sliding window implementations (i.e., refreshing of prior data) of PDACS are effective solutions to this problem at both 3 T and simulated 0.5 T bSSFP images.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.12027 | DOI Listing |
Mar Life Sci Technol
August 2025
Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, and The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266000 China.
Unlabelled: The distribution of (Euphrasen, 1788) spans a pronounced latitudinal-environmental gradient from the subtropical to the subpolar zones. The species is reported to have multiple stocks along coastal China, exhibiting different spawning behaviors and habitat preferences. Such ecological variations might imply potential genetic divergence and local adaptation.
View Article and Find Full Text PDFFront Neurorobot
August 2025
College of Air Traffic Management, Civil Aviation Flight University of China, Chengdu, China.
Introduction: To address the challenges of current 4D trajectory prediction-specifically, limited multi-factor feature extraction and excessive computational cost-this study develops a lightweight prediction framework tailored for real-time air-traffic management.
Methods: We propose a hybrid RCBAM-TCN-LSTM architecture enhanced with a teacher-student knowledge distillation mechanism. The Residual Convolutional Block Attention Module (RCBAM) serves as the teacher network to extract high-dimensional spatial features via residual structures and channel-spatial attention.
Chaos
September 2025
MEMOTEF, Sapienza University of Rome, Roma 00161, Italy.
In this study, we construct surrogate stochastic processes that are challenging to distinguish from ordinary Brownian motion using a method based on the Schauder representation. Specifically, by assuming non-Gaussian (beta and uniform) distributions for the Schauder coefficients, we generate sample paths that preserve key properties of Brownian motion-such as quadratic variation, covariance structure, pointwise Hölder regularity, uncorrelated increments, as well as Gaussian marginal distributions. However, a deeper analysis relying on entropy-based measures and sliding-window spectral variance reveals that only the Gaussian-based construction preserves the expected randomness and the consistent spectral behavior of Brownian motion over time.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Agriculture, Shihezi University, Shihezi, China.
Introduction: Existing facility environment prediction models often suffer from low accuracy, poor timeliness, and error accumulation in long-term predictions under multifactor nonlinear coupling conditions. These limitations significantly constrain the effectiveness of precise environmental regulation in agricultural facilities.
Methods: To address these challenges, this paper proposes a novel facility environment prediction model (LSTM-AT-DP) integrating Long Short-Term Memory networks with attention mechanisms and advanced data preprocessing.
Changes in population responses to climate are usually studied at broad spatial grains, such as across species ranges. Only a handful of studies have investigated how small-scale variation, for example driven by soil conditions and microtopography, can mediate the responses of population vital rates to climate. Here, we examine responses of vital rates to climate across five subpopulations occurring in coastal dune locations that range from the foredune to the backdune.
View Article and Find Full Text PDF