Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Existing facility environment prediction models often suffer from low accuracy, poor timeliness, and error accumulation in long-term predictions under multifactor nonlinear coupling conditions. These limitations significantly constrain the effectiveness of precise environmental regulation in agricultural facilities.

Methods: To address these challenges, this paper proposes a novel facility environment prediction model (LSTM-AT-DP) integrating Long Short-Term Memory networks with attention mechanisms and advanced data preprocessing. The model architecture employs: (1) a Data Preprocessing (DP) module combining Wavelet Threshold Denoising (WTD) for noise elimination and Sliding Window (SW) technique for feature matrix construction; (2) an LSTM core for deep temporal modeling; and (3) an Attention Mechanism (AT) for dynamic feature weighting to enhance critical temporal feature extraction.

Results: In 24-hour prediction tests, the model achieved determination coefficients (R²) of 0.9602 (temperature), 0.9529 (humidity), and 0.9839 (radiation), representing improvements of 3.89%, 5.53%, and 2.84% respectively over baseline LSTM models. Corresponding RMSE reductions were 0.6830, 1.8759, and 12.952 for these parameters.

Discussion: The results demonstrate that the LSTM-AT-DP model significantly enhances prediction accuracy while effectively suppressing error accumulation in long-term forecasts. This advancement provides robust technical support for precise facility environment regulation, with particular improvements observed in humidity prediction. The integrated attention mechanism proves particularly effective in identifying and weighting critical temporal features across all measured environmental parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399538PMC
http://dx.doi.org/10.3389/fpls.2025.1652478DOI Listing

Publication Analysis

Top Keywords

facility environment
12
prediction model
8
environmental parameters
8
lstm-at-dp model
8
environment prediction
8
error accumulation
8
accumulation long-term
8
data preprocessing
8
attention mechanism
8
critical temporal
8

Similar Publications

Background: Laboratory animal veterinarians play a crucial role as a bridge between the ethical use of laboratory animals and the advancement of scientific and medical knowledge in biomedical research. They alleviate pain and reduce distress through veterinary care of laboratory animals. Additionally, they enhance animal welfare by creating environments that mimic natural habitats through environmental enrichment and social associations.

View Article and Find Full Text PDF

Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.

View Article and Find Full Text PDF

Impact of wettability heterogeneity on methane hydrate growth kinetics in partially water-saturated sediments.

J Colloid Interface Sci

August 2025

Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),

Hypothesis: Gas hydrate formation in sediments is influenced by the availability of gas-water interfacial areas, which governs gas-water interactions. The surface wettability of sediment particles is expected to affect the spatial distribution of water within the pore space, thereby altering the extent of gas-liquid contact. Consequently, by tuning the wettability heterogeneity of the sediment, the spatial distribution of pore water can be regulated, which in turn influences the gas-water interactions and the kinetics of gas hydrate formation.

View Article and Find Full Text PDF

Solvation Structure of Np in a Noncomplexing Environment.

Inorg Chem

September 2025

Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

The solvation structure of an Np ion in an aqueous, noncomplexing and nonoxidizing environment of trifluoromethanesulfonic (triflic) acid was investigated with X-ray absorption spectroscopy (XAS) combined with ab initio molecular dynamics (AIMD) and time-dependent density functional theory (TDDFT) calculations. Np L-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data were collected for Np in 1, 3, and 7 M triflic acid using a laboratory-scale spectrometer and separately at a synchrotron facility, producing data sets in excellent agreement. TDDFT calculations revealed a weak pre-edge feature not previously reported for Np L-edge XANES.

View Article and Find Full Text PDF

Background: Salmonella enterica encompasses over 2,600 serovars, including several commonly associated with severe infection in humans. Salmonella is a major cause of sepsis in Africa; however, diagnosis requires clinical microbiology facilities. Environmental surveillance has the potential to play a role in Salmonella surveillance.

View Article and Find Full Text PDF