Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fluorescence resonance energy transfer (FRET) is an important source of long-range distance information in macromolecules. However, extracting maximum information requires knowledge of fluorophore, donor and acceptor, positions on the macromolecule. We previously determined the structure of the indocarbocyanine fluorophores Cy3 and Cy5 attached to DNA via three-carbon atom tethers, showing that they stacked onto the end of the helix in a manner similar to an additional basepair. Our recent FRET study has suggested that when they are attached via a longer 13-atom tether, these fluorophores are repositioned relative to the terminal basepair by a rotation of ∼30°, while remaining stacked. In this study, we have used NMR to extend our structural understanding to the commonly used fluorophore sulfoindocarbocyanine-3 (sCy3) attached to the 5'-terminus of the double-helical DNA via a 13-atom flexible tether (L13). We find that L13-sCy3 remains predominantly stacked onto the end of the duplex, but adopts a significantly different conformation, from that of either Cy3 or Cy5 attached by 3-atom tethers, with the long axes of the fluorophore and the terminal basepair approximately parallel. This result is in close agreement with our FRET data, supporting the contention that FRET data can be used to provide orientational information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274786PMC
http://dx.doi.org/10.1016/j.bpj.2012.01.001DOI Listing

Publication Analysis

Top Keywords

flexible tether
8
cy3 cy5
8
cy5 attached
8
terminal basepair
8
fret data
8
attached
5
structure sulfoindocarbocyanine
4
sulfoindocarbocyanine terminally
4
terminally attached
4
attached dsdna
4

Similar Publications

As supramolecular assemblies, polypseudorotaxanes (PPR) exhibit inherent advantages in modular adaptability and structural programmability, with the potential to build tuneable platforms integrating various functionalities. Here we report the "one-pot" preparation of a self-assembled thiol-rich PPR (SPPR), where thiolated-α-cyclodextrins (SHαCD) spontaneously thread onto polymers, and are then crosslinked into a three-dimensional network by the thermally-triggered oxidation of thiols into disulfide bonds. The dynamic thiol groups along the SPPR provide remarkable modularity for the functionalization of thiophilic metal nanoparticles (NPs), exemplified by two application vectors.

View Article and Find Full Text PDF

Assessing the mechanical properties of soft tissues holds broad clinical relevance. Advances in flexible electronics offer possibilities for wearable monitoring of tissue stiffness. However, existing technologies often rely on tethered setups or require frequent calibration, restricting their use in ambulatory environments.

View Article and Find Full Text PDF

Purpose: To biomechanically assess the influence of intraoperative correction and presenting Sanders maturity scores (SS) on growth modulation correction after 2 years in pediatric idiopathic scoliosis treated with Vertebral Body Tethering (VBT).

Methods: Lumbar VBT was simulated using patient-specific finite element models (FEMs) from 20 cases of pediatric idiopathic scoliosis (average thoracolumbar/lumbar Cobb 47°; min: 34°, max: 63°), calibrated for preoperative SS, weight, and spine flexibility. The validated FEM included lateral decubitus positioning and VBT instrumentation at the actual upper instrumented vertebra (UIV: T9-T12) and lower instrumented vertebra (LIV: L2-L4).

View Article and Find Full Text PDF

Purpose: To measure the effects of posterior vertebral tethering (pVBT) on disc pressure and the effect of tether tension on growth modulation in the hyperkyphotic swine model, and to use computational modeling to predict growth modulation in scenarios unable to be tested in the animal model.

Methods: Swine were divided into non-operative control, single-level apical pVBT, or multi-level posterior pVBT groups. Pulsed fluorochrome labeling was used to measure regional vertebral growth rates, digital radiographs to assess changes in vertebral alignment, and pressure transducers to measure intervertebral disc pressures.

View Article and Find Full Text PDF

Numerous studies have attempted to develop medical devices using vine robots due to their potential for frictionless locomotion and adaptability in confined environments. However, for applications in colonoscopy, challenges such as high stiffness, limited steering capabilities, difficulties in integrating tethered sensors, and issues related to safe retraction have hindered their practical application. This article addresses these challenges and presents a comprehensive solution that simultaneously resolves these issues while preserving the intrinsic features of vine robots.

View Article and Find Full Text PDF