Rapid microparticle patterning by enhanced dielectrophoresis effect on a double-layer electrode substrate.

Electrophoresis

Department of Physics, Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Hubei, P R China.

Published: November 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a feasible dielectrophoresis (DEP) approach for rapid patterning of microparticles on a reusable double-layer electrode substrate in microfluidics. Simulation analysis demonstrated that the DEP force was dramatically enhanced by the induced electric field on top interdigitated electrodes. By adjusting electric field intensity through the bottom electrodes on thin glass substrate (100 μm), polystyrene particles (10 μm) were effectively patterned by top electrodes within several seconds (<5 s). The particle average velocity can reach a maximum value of about 20.0±3.0 μm/s at 1 MHz with the strongest DEP force of 1.68 pN. This approach implements integration of functional electrodes into one substrate and avoids direct electrical connection to biological objects, providing a potential lab-on-chip system for biological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201100232DOI Listing

Publication Analysis

Top Keywords

double-layer electrode
8
electrode substrate
8
electric field
8
rapid microparticle
4
microparticle patterning
4
patterning enhanced
4
enhanced dielectrophoresis
4
dielectrophoresis double-layer
4
substrate feasible
4
feasible dielectrophoresis
4

Similar Publications

Economically viable and biologically compatible amino acids demonstrate significant potential as electrolyte microstructure modifiers in aqueous zinc-ion batteries (AZIBs). Compared to polar amino acids, nonpolar amino acids simultaneously own zincophilicity and hydrophobicity, showing great potential in the industrial application of AZIBs. However, nonpolar amino acids have been comparatively understudied in existing research investigations.

View Article and Find Full Text PDF

We report the performance of solid-state ceramic supercapacitors (SSCs) based on a novel composite electrolyte comprising aluminum-doped lithium lanthanum titanate perovskite, LiLaTiAlO (Al-doped LLTO), and the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM BF). Rietveld refinement of X-ray diffraction data confirms the preservation of the tetragonal perovskite phase after Al substitution, indicating structural stability of the host lattice. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy further corroborate the successful incorporation of Al without forming secondary phases.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) imaging of ionic liquid (IL) distribution in electric double-layer (EDL) devices has been actively explored to understand the origin of their excellent performance. However, this has been impeded by insufficient resolution or a poor understanding of the mechanisms of 3D IL imaging. Here, we overcome these difficulties using 3D scanning force microscopy (3D-SFM) with variable tip/sample bias voltages for visualizing 3D ,-diethyl--methyl--(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (DEME-TFSI) distributions on a Au electrode in EDL capacitors.

View Article and Find Full Text PDF

Modulation of Interfacial Water at Gas-Liquid-Solid Interface for Water Electrolysis.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.

Renewable electricity-driven water electrolysis stands at the forefront of clean hydrogen production, playing a crucial role in achieving a net-zero carbon future. Interfacial water is fundamental to this process, dictating reaction kinetics, proton and electron transfer dynamics, and mass transport at the electrode-electrolyte interface. Effective tuning of the structure of interfacial water is imperative for enhancing catalytic activity, efficiency, and long-term stability.

View Article and Find Full Text PDF

Understanding the electrical double layer (EDL) is fundamental for enhancing the efficiency, capacity, and stability of electrochemical systems. The EDL at the electrode/polyelectrolyte interface exhibits significantly different properties with a more complex structure compared to liquid electrolyte systems. Characterizing this intricate interface experimentally remains a major challenge.

View Article and Find Full Text PDF