Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The fasciclin-like arabinogalactan-proteins (FLAs) are an enigmatic class of 21 members within the larger family of arabinogalactan-proteins (AGPs) in Arabidopsis thaliana. Located at the cell surface, in the cell wall/plasma membrane, they are implicated in many developmental roles yet their function remains largely undefined. Fasciclin (FAS) domains are putative cell-adhesion domains found in extracellular matrix proteins of organisms from all kingdoms, but the juxtaposition of FAS domains with highly glycosylated AGP domains is unique to plants. Recent studies have started to elucidate the role of FLAs in Arabidopsis development. FLAs containing a single FAS domain are important for the integrity and elasticity of the plant cell wall matrix (FLA11 and FLA12) and FLA3 is involved in microspore development. FLA4/SOS5 with two FAS domains and two AGP domains has a role in maintaining proper cell expansion under salt stressed conditions. The role of other FLAs remains to be uncovered.

Method/principal Findings: Here we describe the characterisation of a T-DNA insertion mutant in the FLA1 gene (At5g55730). Under standard growth conditions fla1-1 mutants have no obvious phenotype. Based on gene expression studies, a putative role for FLA1 in callus induction was investigated and revealed that fla1-1 has a reduced ability to regenerate shoots in an in vitro shoot-induction assay. Analysis of FLA1p:GUS reporter lines show that FLA1 is expressed in several tissues including stomata, trichomes, the vasculature of leaves, the primary root tip and in lateral roots near the junction of the primary root.

Conclusion: The results of the developmental expression of FLA1 and characterisation of the fla1 mutant support a role for FLA1 in the early events of lateral root development and shoot development in tissue culture, prior to cell-type specification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178619PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025154PLOS

Publication Analysis

Top Keywords

fas domains
12
arabidopsis thaliana
8
agp domains
8
role flas
8
role fla1
8
fla1
7
domains
6
role
5
fasciclin-like arabinogalactan-protein
4
arabinogalactan-protein fla
4

Similar Publications

Fatty acid synthase in high and low lipid-producing strains of Mucor circinelloides: identification, phylogenetic analysis, and expression profiling during growth and lipid accumulation.

Biotechnol Lett

September 2025

Shandong Provincial Engineering Research Center for Precision Nutrition and Healthy Elderly Care, Qilu Medical University, 1678 Renmin West Road, Zibo, 255300, People's Republic of China.

Fatty acid synthase (FAS) is one of the most important enzymes in lipid biosynthesis, which can catalyze the reaction of acetyl-CoA and malonyl-CoA to produce fatty acids. However, the structure, function, and molecular mechanism of FAS regulating lipid synthesis in the fungus Mucor circinelloides are unclear. In the present study, two encoding fas genes in the high lipid-producing strain WJ11 and low lipid-producing strain CBS277.

View Article and Find Full Text PDF

Polyserine-mediated targeting of FAF2/UBXD8 ameliorates tau aggregation.

Neuron

August 2025

Department of Biochemistry, University of Colorado, Boulder, CO, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA. Electronic address:

Tau aggregation is a hallmark of several neurodegenerative disorders, and the gain of toxic function of misfolded tau species is linked to pathobiology. Herein, we identified proteins that limit tau aggregation when targeted to tau aggregates by polyserine domains. Polyserine targeting was most effective at mitigating tau aggregation when fused to the vasolin-containing protein (VCP) adaptor protein fas-associated factor family member 2/UBX domain-containing protein 8 (FAF2/UBXD8).

View Article and Find Full Text PDF

Background: The mechanism of electroacupuncture (EA) pretreatment for cerebral ischemia-reperfusion injury (CIRI) is unclear. This study aimed to investigate whether EA pretreatment attenuates CIRI through the miR-124/nuclear factor kappa B (NF-κB)/Fas signaling pathway.

Methods: Following 7 days of EA pretreatment at Baihui (GV20), Fengfu (GV16), and Dazhui (GV14), CIRI rats were established.

View Article and Find Full Text PDF

Background: Pollen Typhae (PT), a traditional Chinese medicine herb utilized in diabetes management, exerts anti-inflammatory effects through its flavonoids, yet the active constituents and mechanisms remain unclear.

Methods: PT total flavone (PTF) was extracted from PT and identified the compounds by UHPLC-MS. Network pharmacology and molecular docking were used to predict the underlying targets and anti-inflammatory mechanisms of PTF.

View Article and Find Full Text PDF

Unfolded protein response transcription factor XBP1 suppresses necroptosis-induced colitis by reinforcing the mucus barrier.

Immunity

August 2025

Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany. Ele

Endoplasmic reticulum (ER) stress and necroptosis are associated with the pathogenesis of inflammatory bowel disease (IBD); however, the potential crosstalk between these pathways is unclear. Here, we show that intestinal epithelial cell (IEC)-specific X-box binding protein 1 (XBP1) deficiency strongly aggravates the development of necroptosis-induced colitis, but not ileitis, in mice lacking caspase-8 or its adapter Fas associated with death domain (FADD) in IECs. Mechanistically, XBP1 ablation led to diminished mucin 2 (MUC2) expression and impaired mucus layer formation in the colon, which allowed bacteria to penetrate and reach the epithelial surface.

View Article and Find Full Text PDF