Publications by authors named "Kim L Johnson"

Phytocannabinoids are medically important specialized defense compounds that are sparsely distributed among plants, yet can synthesize unprecedented amounts of these compounds within highly specialized surface cell factories known as glandular trichomes. The control mechanisms that allow for this high level of productivity are poorly understood at the molecular level, although increasing evidence supports the role of oxylipin metabolism in phytocannabinoid production. Oxylipins are a large class of lipid-based oxygenated biological signaling molecules.

View Article and Find Full Text PDF

Receptor-like kinases (RLKs) are instrumental in regulating plant cell surface sensing and vascular tissue differentiation. Wall-associated kinases (WAKs) are a unique group of RLKs that have been identified as key cell wall integrity (CWI) sensors. WAK signaling is suggested to be activated during growth in response to cell expansion or when the cell wall is damaged, for example, during pathogen attack.

View Article and Find Full Text PDF

Subzero temperatures are often lethal to plants. Many temperate herbaceous plants have a cold acclimation mechanism that allows them to sense a drop in temperature and prepare for freezing stress through accumulation of soluble sugars and cryoprotective proteins. As ice formation primarily occurs in the apoplast (the cell wall space), cell wall functional properties are important for plant freezing tolerance.

View Article and Find Full Text PDF

Initiation of plant vascular tissue is regulated by transcriptional networks during development and in response to environmental stimuli. The WALL-ASSOCIATED KINASES (WAKs) and WAK-likes (WAKLs) are cell surface receptors involved in cell expansion and defence in cells with primary walls, yet their roles in regulation of vascular tissue development that contain secondary walls remains unclear. In this study, we showed tomato (Solanum lycopersicum) SlWAKL2 and the orthologous gene in Arabidopsis thaliana, AtWAKL14, were specifically expressed in vascular tissues.

View Article and Find Full Text PDF

Introduction: Fasciclin-like arabinogalactan-proteins (FLAs) are a family of multi-domain glycoproteins present at the cell surface and walls of plants. FLA12 and homologs in cotton, , and flax have been shown to play important functions regulating secondary cell wall (SCW) development. FLA12 has been shown to have distinct roles from the closely related FLA11 that also functions during SCW development.

View Article and Find Full Text PDF

The plant secondary cell wall is a thickened matrix of polysaccharides and lignin deposited at the cessation of growth in some cells. It forms the majority of carbon in lignocellulosic biomass, and it is an abundant and renewable source for forage, fiber, materials, fuels, and bioproducts. The complex structure and arrangement of the cell wall polymers mean that the carbon is difficult to access in an economical and sustainable way.

View Article and Find Full Text PDF

The cell wall is one of the defining features of plants, controlling cell shape, regulating growth dynamics and hydraulic conductivity, as well as mediating plants interactions with both the external and internal environments. Here we report that a putative mechanosensitive Cys-protease DEFECTIVE KERNEL1 (DEK1) influences the mechanical properties of primary cell walls and regulation of cellulose synthesis. Our results indicate that DEK1 is an important regulator of cellulose synthesis in epidermal tissue of cotyledons during early post-embryonic development.

View Article and Find Full Text PDF

Significant changes have occurred in plant cell wall composition during evolution and diversification of tracheophytes. As the sister lineage to seed plants, knowledge on the cell wall of ferns is key to track evolutionary changes across tracheophytes and to understand seed plant-specific evolutionary innovations. Fern cell wall composition is not fully understood, including limited knowledge of glycoproteins such as the fern arabinogalactan proteins (AGPs).

View Article and Find Full Text PDF

The role of glycoproteins as key cell surface molecules during development and stress is well established; yet, the relationship between their structural features and functional mechanisms is poorly defined. FASCICLIN-LIKE ARABINOGALACTAN PROTEINs (FLAs), which impact plant growth and development, are an excellent example of a glycoprotein family with a complex multidomain structure. FLAs combine globular fasciclin-like (FAS1) domains with regions that are intrinsically disordered and contain glycomotifs for directing the addition of O-linked arabinogalactan (AG) glycans.

View Article and Find Full Text PDF

Wall-associated kinases/kinase-likes (WAKs/WAKLs) are plant cell surface sensors. A variety of studies have revealed the important functions of WAKs/WAKLs in regulating cell expansion and defense in cells with primary cell walls. Less is known about their roles during the development of the secondary cell walls (SCWs) that are present in xylem vessel (XV) and interfascicular fiber (IF) cells.

View Article and Find Full Text PDF

Secondary cell walls (SCWs) in stem xylem vessel and fibre cells enable plants to withstand the enormous compressive forces associated with upright growth. It remains unclear if xylem vessel and fibre cells can directly sense mechanical stimuli and modify their SCW during development. We provide evidence that Arabidopsis SCW-specific Fasciclin-Like Arabinogalactan-proteins 11 (FLA11) and 12 (FLA12) are possible cell surface sensors regulating SCW development in response to mechanical stimuli.

View Article and Find Full Text PDF

Background: Flowers which imitate insect oviposition sites probably represent the most widespread form of floral mimicry, exhibit the most diverse floral signals and are visited by two of the most speciose and advanced taxa of insect - beetles and flies. Detailed comparative studies on brood-site mimics pollinated exclusively by each of these insect orders are lacking, limiting our understanding of floral trait adaptation to different pollinator groups in these deceptive systems.

Methods: Two closely related and apparent brood-site mimics, Typhonium angustilobum and T.

View Article and Find Full Text PDF

Glycosylation is a fundamental co-translational and/or post-translational modification process where an attachment of sugars onto either proteins or lipids can alter their biological function, subcellular location and modulate the development and physiology of an organism. Glycosylation is not a template driven process and as such produces a vastly larger array of glycan structures through combinatorial use of enzymes and of repeated common scaffolds and as a consequence it provides a huge expansion of both the proteome and lipidome. While the essential role of - and -glycan modifications on mammalian glycoproteins is already well documented, we are just starting to decode their biological functions in plants.

View Article and Find Full Text PDF
Article Synopsis
  • Glycosyltransferases (GTs) are crucial enzymes for forming glycosidic linkages, involved in producing various important biological products like glycans and glycoproteins, and plants have a significantly larger variety of these enzymes compared to animals.
  • This study enhances the existing GT clone collection by adding 105 new GT cDNAs, resulting in a total of 508 clones, and establishes a comprehensive pipeline for analyzing these enzymes' functions using techniques like mass spectrometry and enzymatic assays.
  • Focusing on the GT14 family, the research successfully demonstrated the activity of specific GT enzymes in synthesizing β-glucuronosyltransferase and identified a new member with greater activity, suggesting
View Article and Find Full Text PDF

The predominant Fascilin 1 (FAS1)-containing proteins in plants belong to the Fasciclin-Like Arabinogalactan-protein (FLA) family of extracellular glycoproteins. In addition to FAS1 domains, these multi-domain FLA proteins contain glycomotif regions predicted to direct addition of large arabinogalactan (AG) glycans and many contain signal sequences for addition of a glycosylphosphatidylinositol (GPI)-anchor to tether them to the plasma membrane. FLAs are proposed to play both structural and signaling functions by forming a range of interactions in the plant extracellular matrix, similar to FAS1-containing proteins in animals.

View Article and Find Full Text PDF

The plant cell wall plays a critical role in signaling responses to environmental and developmental cues, acting as both the sensing interface and regulator of plant cell integrity. Wall-associated kinases (WAKs) are plant receptor-like kinases located at the wall-plasma membrane-cytoplasmic interface and implicated in cell wall integrity sensing. WAKs in have been shown to bind pectins in different forms under various conditions, such as oligogalacturonides (OG)s in stress response, and native pectin during cell expansion.

View Article and Find Full Text PDF

Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze-thaw cycle. Many plant species increase their freezing tolerance during exposure to low, non-freezing temperatures, a process termed cold acclimation. In addition, exposure to mild freezing temperatures after cold acclimation evokes a further increase in freezing tolerance (sub-zero acclimation).

View Article and Find Full Text PDF

Seagrasses evolved from monocotyledonous land plants that returned to the marine habitat. This transition was accomplished by substantial changes in cell wall composition, revealing habitat-driven adaption to the new environment. Whether arabinogalactan-proteins (AGPs), important signalling molecules of land plants, are present in seagrass cell walls is of evolutionary and plant development interest.

View Article and Find Full Text PDF

Plant cells are surrounded by highly dynamic cell walls that play important roles regulating aspects of plant development. Recent advances in visualization and measurement of cell wall properties have enabled accumulation of new data about wall architecture and biomechanics. This has resulted in greater understanding of the dynamics of cell wall deposition and remodeling.

View Article and Find Full Text PDF

Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphosphatidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. Whereas the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPI-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPI-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans.

View Article and Find Full Text PDF