Publications by authors named "Carolyn J Schultz"

Climate change poses significant challenges to our ability to keep a growing global population fed, clothed, and fuelled. This review sets the scene by summarizing the impacts of climate change on production of the major grain crop species rice, wheat, and maize, with a focus on yield reductions due to abiotic stresses and altered disease pressures. We discuss efforts to improve resilience, emphasizing traits such as water use efficiency, heat tolerance, and disease resistance.

View Article and Find Full Text PDF

Diversification of the cellulose synthase superfamily of glycosyltransferases has provided plants with the ability to synthesize varied cell wall polysaccharides such as xyloglucan, mannans, and the mixed-linkage glucans of cereals. Surprisingly, some but not all members of the cellulose synthase-like M (CslM) gene family have recently been shown to be involved in the glycosylation of the aglycone core of a range of triterpenoid saponins. However, no cell wall activity has yet been attributed to any of the CslM gene family members.

View Article and Find Full Text PDF

Sexual dysfunction is a common toxicity and detrimental for the quality of life of women treated with chemoradiotherapy for anal cancer. Sexual dysfunction occurs because the vagina is closely approximated to the anal canal and typically receives substantial doses of radiation. Strategies for mitigation have largely been focused on posttreatment therapy and symptom management.

View Article and Find Full Text PDF

Diversity in arbuscular mycorrhizal fungi (AMF) contributes to biodiversity and resilience in natural environments and healthy agricultural systems. Functional complementarity exists among species of AMF in symbiosis with their plant hosts, but the molecular basis of this is not known. We hypothesise this is in part due to the difficulties that current sequence assembly methodologies have assembling sequences for intrinsically disordered proteins (IDPs) due to their low sequence complexity.

View Article and Find Full Text PDF

Kushen root, from the woody legume , is a traditional Chinese medicine that is a key ingredient in several promising cancer treatments. This activity is attributed in part to two quinolizidine alkaloids (QAs), oxymatrine and matrine, that have a variety of therapeutic activities . Genetic selection is needed to adapt for cultivation and to improve productivity and product quality.

View Article and Find Full Text PDF

Apomixis results in asexual seed formation where progeny are identical to the maternal plant. In ovules of apomictic species of the subgenus , meiosis of the megaspore mother cell generates four megaspores. Aposporous initial (AI) cells form during meiosis in most ovules.

View Article and Find Full Text PDF

The carbohydrate-rich cell walls of land plants and algae have been the focus of much interest given the value of cell wall-based products to our current and future economies. Hydroxyproline-rich glycoproteins (HRGPs), a major group of wall glycoproteins, play important roles in plant growth and development, yet little is known about how they have evolved in parallel with the polysaccharide components of walls. We investigate the origins and evolution of the HRGP superfamily, which is commonly divided into three major multigene families: the arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs) are functional proteins that lack a well-defined three-dimensional structure. The study of IDPs is a rapidly growing area as the crucial biological functions of more of these proteins are uncovered. In plants, IDPs are implicated in plant stress responses, signaling, and regulatory processes.

View Article and Find Full Text PDF

Fiber-forming proteins and peptides are being scrutinized as a promising source of building blocks for new nanomaterials. Arabinogalactan-like (AGL) proteins expressed at the symbiotic interface between plant roots and arbuscular mycorrhizal fungi have novel sequences, hypothesized to form polyproline II (PPII) helix structures. The functional nature of these proteins is unknown but they may form structures for the establishment and maintenance of fungal hyphae.

View Article and Find Full Text PDF

Background: The fasciclin-like arabinogalactan-proteins (FLAs) are an enigmatic class of 21 members within the larger family of arabinogalactan-proteins (AGPs) in Arabidopsis thaliana. Located at the cell surface, in the cell wall/plasma membrane, they are implicated in many developmental roles yet their function remains largely undefined. Fasciclin (FAS) domains are putative cell-adhesion domains found in extracellular matrix proteins of organisms from all kingdoms, but the juxtaposition of FAS domains with highly glycosylated AGP domains is unique to plants.

View Article and Find Full Text PDF

The micronutrient content of most cereal grains is low and responsible for malnutrition deficiencies in millions of people who rely on grains as their primary food source. Any strategy that can increase the micronutrient content of grain will have significant benefits to world health. We identified a gene from barley encoding a cell wall protein with multiple histidine (His)-rich motifs interspersed with short arabinogalactan-protein (AGP) domains and have called it Hordeum vulgare His-rich AGP (HvHRA1).

View Article and Find Full Text PDF

Monoterpenoid indole alkaloids (MIA) are a diverse class of secondary metabolites important for plant protection and are drugs for treating human diseases. Arabidopsis thaliana (L.) is not known to produce MIAs, yet its genome has 15 genes with similarity to the periwinkle (Catharanthus roseus (L.

View Article and Find Full Text PDF

The ability of arbuscular mycorrhizal (AM) fungi to colonise the root apoplast, and in coordination with the plant develop specialised plant-fungal interfaces, is key to successful symbioses. The availability of expressed sequence tags (EST) of the model legume, Medicago truncatula, and AM fungus, Glomus intraradices, permits identification of genes required for development of symbiotic interfaces. The M.

View Article and Find Full Text PDF

Background: Upstream open reading frames (uORFs) can down-regulate the translation of the main open reading frame (mORF) through two broad mechanisms: ribosomal stalling and reducing reinitiation efficiency. In distantly related plants, such as rice and Arabidopsis, it has been found that conserved uORFs are rare in these transcriptomes with approximately 100 loci. It is unclear how prevalent conserved uORFs are in closely related plants.

View Article and Find Full Text PDF

The dark discoloration of the embryo end of barley grain (known as black point) is a physiological disorder and the discovery of a quantitative trait locus (QTL) on 2H confirms this trait is controlled genetically. The mechanisms underlying black point tolerance can now be dissected through identification of candidate genes. Comparisons between the QTL identified on chromosomes 2H of barley and 2B of wheat suggest that they are in similar positions near the centromere.

View Article and Find Full Text PDF

To begin biochemical and molecular studies on the biosynthesis of the type II arabinogalactan chains on arabinogalactan-proteins (AGPs), we adopted a bioinformatic approach to identify and systematically characterise the putative galactosyltransferases (GalTs) responsible for synthesizing the beta-(1,3)-Gal linkage from CAZy GT-family-31 from Arabidopsis thaliana. These analyses confirmed that 20 members of the GT-31 family contained domains/motifs typical of biochemically characterised beta-(1,3)-GTs from mammalian systems. Microarray data confirm that members of this family are expressed throughout all tissues making them likely candidates for the assembly of the ubiquitously found AGPs.

View Article and Find Full Text PDF

Black point of barley grain is a disorder characterised by a brown-black discolouration at the embryo end of the grain. Black point is undesirable to the malting industry and results in significant economic loss annually. To identify proteins associated with barley black point we utilised a proteomic approach with 2-DE to compare proteins from whole grain samples of black pointed and healthy grain.

View Article and Find Full Text PDF

We have developed a method for separating the deglycosylated protein/peptide backbones of the small arabinogalactan (AG)-peptides from the larger classical arabinogalactan-proteins (AGPs). AGPs are an important class of plant proteoglycans implicated in plant growth and development. Separation of AG-peptides enabled us to identify eight of 12 AG-peptides from Arabidopsis thaliana predicted from genomic sequences.

View Article and Find Full Text PDF

Arabinogalactan-proteins (AGPs) are a family of complex proteoglycans widely distributed in plants. The Arabidopsis rat1 mutant, previously characterized as resistant to Agrobacterium tumefaciens root transformation, is due to a mutation in the gene for the Lys-rich AGP, AtAGP17. We show that the phenotype of rat1 correlates with down-regulation of AGP17 in the root as a result of a T-DNA insertion into the promoter of AGP17.

View Article and Find Full Text PDF

Posttranslational glycosylphosphatidylinositol (GPI) lipid anchoring is common not only for animal and fungal but also for plant proteins. The attachment of the GPI moiety to the carboxyl-terminus after proteolytic cleavage of a C-terminal propeptide is performed by the transamidase complex. Its four known subunits also have obvious full-length orthologs in the Arabidopsis and rice (Oryza sativa) genomes; thus, the mechanism of substrate protein processing appears similar for all eukaryotes.

View Article and Find Full Text PDF

Fasciclin-like arabinogalactan proteins (FLAs) are a subclass of arabinogalactan proteins (AGPs) that have, in addition to predicted AGP-like glycosylated regions, putative cell adhesion domains known as fasciclin domains. In other eukaryotes (e.g.

View Article and Find Full Text PDF

Arabinogalactan proteins (AGPs) are extracellular hydroxyproline-rich proteoglycans implicated in plant growth and development. The protein backbones of AGPs are rich in proline/hydroxyproline, serine, alanine, and threonine. Most family members have less than 40% similarity; therefore, finding family members using Basic Local Alignment Search Tool searches is difficult.

View Article and Find Full Text PDF