Background And Aims: Shattering is a natural phenomenon displayed by dry fruits or capsules that dehisce at maturity to distribute seeds. This undesirable trait in commercially important Plantago ovata can cause high yield losses, especially when triggered by weather events. However, the underlying internal and external triggers of capsule dehiscence are not well understood.
View Article and Find Full Text PDFDiversification of the cellulose synthase superfamily of glycosyltransferases has provided plants with the ability to synthesize varied cell wall polysaccharides such as xyloglucan, mannans, and the mixed-linkage glucans of cereals. Surprisingly, some but not all members of the cellulose synthase-like M (CslM) gene family have recently been shown to be involved in the glycosylation of the aglycone core of a range of triterpenoid saponins. However, no cell wall activity has yet been attributed to any of the CslM gene family members.
View Article and Find Full Text PDFWhen wetted, Plantago seeds become covered with a polysaccharide-rich gel called mucilage that has value as a food additive and bulking dietary fibre. Industrially, the dry husk layer that becomes mucilage, called psyllium, is milled off Plantago ovata seeds, the only commercial-relevant Plantago species, while the residual inner seed tissues are either used for low value animal feed or discarded. We suggest that this practice is potentially wasting a highly nutritious resource and here describe the use of histological, physicochemical, and chromatographic analyses to compare whole seed composition/characteristics of P.
View Article and Find Full Text PDFIn this study, we optimized and compared different transmission electron microscopy (TEM) methods to visualize changes to Gram-negative bacterial morphology induced by treatment with a robenidine analogue (NCL195) and colistin combination. Aldehyde-fixed bacterial cells (untreated, treated with colistin or NCL195 + colistin) were prepared using conventional TEM methods and compared with ultrathin Tokuyasu cryo-sections. The results of this study indicate superiority of ultrathin cryo-sections in visualizing the membrane ultrastructure of and , with a clear delineation of the outer and inner membrane as well as the peptidoglycan layer.
View Article and Find Full Text PDFIn this study, the potential of using the novel antibiotic NCL195 combined with subinhibitory concentrations of colistin against infections caused by Gram-negative bacteria (GNB) was investigated. We showed synergistic activity of the combination NCL195 + colistin against clinical multidrug-resistant GNB pathogens with minimum inhibitory concentrations (MICs) for NCL195 ranging from 0.5-4 μg/mL for Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, whereas NCL195 alone had no activity.
View Article and Find Full Text PDFFront Microbiol
August 2020
Multidrug-resistant (MDR) pathogens, particularly the ESKAPE group (, , , , , , and spp.), have become a public health threat worldwide. Development of new antimicrobial classes and the use of drugs in combination are potential strategies to treat MDR ESKAPE pathogen infections and promote optimal antimicrobial stewardship.
View Article and Find Full Text PDFPlant Physiol
July 2018
Cell walls are crucial for the integrity and function of all land plants and are of central importance in human health, livestock production, and as a source of renewable bioenergy. Many enzymes that mediate the biosynthesis of cell wall polysaccharides are encoded by members of the large () gene superfamily. Here, we analyzed 29 sequenced genomes and 17 transcriptomes to revise the phylogeny of the gene superfamily in angiosperms.
View Article and Find Full Text PDFBackground: Setaria viridis has emerged as a model species for the larger C4 grasses. Here the cellulose synthase (CesA) superfamily has been defined, with an emphasis on the amounts and distribution of (1,3;1,4)-β-glucan, a cell wall polysaccharide that is characteristic of the grasses and is of considerable value for human health.
Methods: Orthologous relationship of the CesA and Poales-specific cellulose synthase-like (Csl) genes among Setaria italica (Si), Sorghum bicolor (Sb), Oryza sativa (Os), Brachypodium distachyon (Bradi) and Hordeum vulgare (Hv) were compared using bioinformatics analysis.
Swarming motility, a flagellum-dependent behavior that allows bacteria to move over solid surfaces, has been implicated in biofilm formation and bacterial virulence. In this study, light and electron microscopic analyses and genetic and functional investigations have shown that at least 50% of Aeromonas isolates from the species most commonly associated with diarrheal illness produce lateral flagella which mediate swarming motility. Aeromonas lateral flagella were optimally produced when bacteria were grown on solid medium for approximately 8 h.
View Article and Find Full Text PDF