98%
921
2 minutes
20
The K-Cl cotransporter KCC2 plays an essential role in neuronal chloride homeostasis, and thereby influences the efficacy and polarity of GABA signaling. Although KCC2 is expressed throughout the somatodendritic membrane, it is remarkably enriched in dendritic spines, which host most glutamatergic synapses in cortical neurons. KCC2 has been shown to influence spine morphogenesis and functional maturation in developing neurons, but its function in mature dendritic spines remains unknown. Here, we report that suppressing KCC2 expression decreases the efficacy of excitatory synapses in mature hippocampal neurons. This effect correlates with a reduced postsynaptic aggregation of GluR1-containing AMPA receptors and is mimicked by a dominant negative mutant of KCC2 interaction with cytoskeleton but not by pharmacological suppression of KCC2 function. Single-particle tracking experiments reveal that suppressing KCC2 increases lateral diffusion of the mobile fraction of AMPA receptor subunit GluR1 in spines but not in adjacent dendritic shafts. Increased diffusion was also observed for transmembrane but not membrane-anchored recombinant neuronal cell adhesion molecules. We suggest that KCC2, likely through interactions with the actin cytoskeleton, hinders transmembrane protein diffusion, and thereby contributes to their confinement within dendritic spines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174661 | PMC |
http://dx.doi.org/10.1073/pnas.1107893108 | DOI Listing |
Lab Chip
September 2025
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
Traumatic brain injuries (TBIs) are a risk factor for Alzheimer's disease (AD), and share several important pathological features including the development of neurofibrillary tangles (NFT) of tau protein. While this association is well established, the underlying pathogenesis is poorly defined and current treatment options remain limited, necessitating novel methods and approaches. In response we developed "TBI-on-a-chip", an trauma model utilizing murine cortical networks on microelectrode arrays (MEAs), capable of reproducing clinically relevant impact injuries while providing simultaneous morphological and electrophysiological readout.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, 44115, USA.
Dysregulated spine morphology is a common feature in the pathology of many neurodevelopmental and neuropsychiatric disorders. Overabundant immature dendritic spines in the hippocampus are causally related to cognitive deficits of Fragile X syndrome (FXS), the most common form of heritable intellectual disability. Recent findings from us and others indicate autophagy plays important roles in synaptic stability and morphology, and autophagy is downregulated in FXS neurons.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University;
Examining circadian synaptic plasticity requires housing mice under different lighting conditions (light/dark cycle, LD 12:12, and constant darkness, DD), providing access to running wheels, and sacrificing them at four defined time points within 24 h-at the beginning and middle of the day/subjective day and at the beginning and middle of the night/subjective night. Brains are then properly fixed for transmission electron microscopy (TEM). The barrel cortex, with its precise somatotopic organization, provides an ideal model for such analysis.
View Article and Find Full Text PDFJ Cell Biol
November 2025
Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
Two major protein recycling pathways have emerged as key regulators of enduring forms of synaptic plasticity, such as long-term potentiation (LTP), yet how these pathways are recruited during plasticity is unknown. Phosphatidylinositol-3-phosphate (PI(3)P) is a key regulator of endosomal trafficking and alterations in this lipid have been linked to neurodegeneration. Here, using primary hippocampal neurons, we demonstrate dynamic PI(3)P synthesis during chemical induction of LTP (cLTP), which drives coordinate recruitment of the SNX17-Retriever and SNX27-Retromer pathways to endosomes and synaptic sites.
View Article and Find Full Text PDFRev Esp Anestesiol Reanim (Engl Ed)
September 2025
Department of Neurology, Xuzhou Central Hospital, Xuzhou, China. Electronic address:
Objective: This study aims to investigate the effects of anaesthesia and surgical procedures on the cognitive function of both young and aged mice. It will also explore the role and mechanisms of c-Fos expression in altering hippocampal neuron excitability and its relationship with perioperative neurocognitive disorders in mice.
Methods: In this study, we used a murine laparotomy model to assess cognitive behavioural changes in both young and aged mice at 1, 3, and 7 days post-surgery.