98%
921
2 minutes
20
Together, acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that ASICs were reversibly inhibited by activation of GABA(A) receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A) receptor-mediated currents. Moreover, activation of the GABA(A) receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A) receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A) receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A) receptors, also modified ASICs in spinal neurons. We conclude that GABA(A) receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138761 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021970 | PLOS |
Nan Fang Yi Ke Da Xue Xue Bao
August 2025
Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China.
Objectives: To investigate the therapeutic effect of acupuncture in a rat model of insomnia and its regulatory effect on the glutamic acid (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) metabolic loop.
Methods: Forty male SD rats were randomly assigned to control group, model group, group and group (=10). In the latter 3 groups, rat models of insomnia were established by intraperitoneal injections of p-chlorophenylalanine and verified using a sodium pentobarbital-induced sleep test.
Pestic Biochem Physiol
November 2025
State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing 211800, PR China. Electronic address:
The insect ionotropic γ-aminobutyric acid (GABA) receptor is an important insecticide target, and alternative splicing (AS) among exons 3a, 3b, 6a, and 6b of its RDL subunit is ubiquitous in insects; however, the AS factors and mechanisms remain unclear. While the neuro-oncological ventral antigen (Nova) is known to regulate AS of the γ2 subunit of mammalian GABA receptors, its role in insects remains unexplored. Two CsNova isoforms, CsNova-X1 and CsNova-X3, were identified by BLAST in the third-generation transcriptome of Chilo suppressalis.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.
Disrupted gamma-aminobutyric acid (GABA) neurotransmission may contribute to the pathophysiology of schizophrenia. Reductions in hippocampal GABAergic neurons have been found in schizophrenia, and increased hippocampal perfusion has been described in schizophrenia and in people at clinical high-risk for psychosis (CHRp). We have also found decreases in hippocampal GABA receptors containing the α5 subunit (GABARα5) in a well-validated neurodevelopmental rat model of relevance for schizophrenia.
View Article and Find Full Text PDFAgeing Res Rev
September 2025
Institute for Cerebrovascular and Neuroregeneration Research (ICNR), Department of Neurology, LSU Health Shreveport, 1501 Kings Hwy, Shreveport, LA 71103, USA. Electronic address:
Perioperative neurocognitive disorders (PNDs) are common complications following surgery, especially in elderly patients, and are characterized by memory loss, attention deficits, and impaired executive function. The pathogenesis of PNDs involves a complex interplay of neuroinflammation, neurotransmitter imbalance, epigenetic modifications, and gut-brain axis disruption. This review summarizes the latest findings on the mechanisms underlying PNDs, with a focus on microglial activation, interleukin imbalance, and NLRP3 inflammasome-mediated pyroptosis.
View Article and Find Full Text PDFACS Chem Neurosci
September 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an 710069, P.R. China.
Developmental epileptic encephalopathies (DEEs), including Dravet syndrome (DS), require antiseizure medications (ASMs) that balance efficacy with developmental safety. There is an urgent clinical need for novel therapeutic agents that combine potent anticonvulsant activity with developmental safety. β-Asarone, an active constituent of plants, has demonstrated antiepileptic potential, but its toxicities severely limit clinical application.
View Article and Find Full Text PDF