Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gene amplification and protein overexpression of erbB2 (Her2/neu) has been observed in approximately 20-30% of breast cancers. ErbB2-positive breast cancer is tend to be more aggressive than other types of breast cancer and therefore further investigation on the signaling pathways of erbB2 is needed for the therapeutic target for breast cancer treatment. Here we report that microRNA-205 (miR-205), a molecule also reported to be associated with breast cancer, is negatively regulated by erbB2 overexpression. Breast epithelial cells exogenously overexpressed with erbB2 decreased the expression of miR-205, whereas increased the expression of cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and cyclin-dependent kinase 6 (CDK6). The decreased expression of miR-205 slightly increased by the transfection of erbB2 siRNA into the erbB2-overexpressing breast cancer epithelial cells. Overexpression of erbB2 enabled breast epithelial cells to grow anchorage-independently in soft agar, and the transfection of the precursor of miR-205 into the cells leaded to the decrease in the ability to grow in soft agar. These results suggest that down-regulation of miR-205 in erbB2-overexpressing breast epithelial cells is essential for erbB2-induced tumorigenesis, and miR-205 may have the potential to be a novel important alternative therapeutic target for erbB2-positive breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2011.07.033DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
epithelial cells
16
breast epithelial
12
cyclin-dependent kinase
12
breast
11
overexpression erbb2
8
erbb2-positive breast
8
therapeutic target
8
decreased expression
8
expression mir-205
8

Similar Publications

Berberine (BBR) is an isoquinoline alkaloid with a variety of biological activities, including anti-microbial and anti-tumoral activities. However, the cellular targets of BBR and the roles of BBR in the radiosensitivity of breast cancer cells are not well defined. In this study, we investigated the effects of BBR on the radiosensitivity of BT549 triple-negative breast cancer cells.

View Article and Find Full Text PDF

Mendelian Randomization Study: The Impact of Gut Microbiota on Survival in HR+ Breast Cancer Patients Under Different Treatment Regimens Through the Modulation of Immune Cell Phenotypes.

Clin Breast Cancer

August 2025

Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, School of Pharmacy, Fujian Medical University, Fuzhou, China. Electronic address:

Background: Emerging evidence suggests that the gut microbiota (GM) may influence the progression of breast cancer by modulating immune responses. Given the vast diversity of GM and immune cell phenotypes, this study aimed to utilize the most advanced and comprehensive data to explore the causal relationships among the GM, immune cell phenotypes, and survival rates in hormone receptor-positive (HR+) breast cancer patients under different treatment regimens.

Methods: We investigated the causal relationships between the GM, immune cell phenotypes, and survival rates in HR+ breast cancer patients treated with 11 distinct therapeutic strategies using Mendelian randomization.

View Article and Find Full Text PDF

[Development of an AI-based Positioning Technical Assistance System for Mammography].

Nihon Hoshasen Gijutsu Gakkai Zasshi

September 2025

Department of Radiological Technology, Faculty of Health Sciences, Gifu University of Medical Science.

Purpose: We aimed to develop an AI-based system to score the positioning in mammography (MG), with the goal of establishing a foundation for future technical support.

Methods: Using 800 mediolateral oblique (MLO) images, we developed an AI model (Mask Generation Model) for automatic extraction of three regions: the pectoralis major muscle, the mammary gland region, and the nipple. Using this model, we extracted three regions from 1544 MLO images and generated mask images.

View Article and Find Full Text PDF

Background: Breast-conserving surgery (BCS) is the primary surgical approach for patients with breast cancer. The accurate determination of surgical margins during BCS is critical for patient prognosis; however, time constraints and limitations in current pathological techniques often prevent pathologists from performing this assessment intraoperatively. The inability to reliably assess margins during surgery can lead to incomplete tumor removal and the need for additional surgeries.

View Article and Find Full Text PDF