Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Theoretical calculations have shown that proton therapy can reduce the incidence of radiation-induced secondary malignant neoplasms (SMN) compared with photon therapy for patients with prostate cancer. However, the uncertainties associated with calculations of SMN risk had not been assessed. The objective of this study was to quantify the uncertainties in projected risks of secondary cancer following contemporary proton and photon radiotherapies for prostate cancer. We performed a rigorous propagation of errors and several sensitivity tests to estimate the uncertainty in the ratio of relative risk (RRR) due to the largest contributors to the uncertainty: the radiation weighting factor for neutrons, the dose-response model for radiation carcinogenesis and interpatient variations in absorbed dose. The interval of values for the radiation weighting factor for neutrons and the dose-response model were derived from the literature, while interpatient variations in absorbed dose were taken from actual patient data. The influence of each parameter on a baseline RRR value was quantified. Our analysis revealed that the calculated RRR was insensitive to the largest contributors to the uncertainty. Uncertainties in the radiation weighting factor for neutrons, the shape of the dose-risk model and interpatient variations in therapeutic and stray doses introduced a total uncertainty of 33% to the baseline RRR calculation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134093PMC
http://dx.doi.org/10.1088/0031-9155/55/23/S02DOI Listing

Publication Analysis

Top Keywords

radiation weighting
12
weighting factor
12
factor neutrons
12
interpatient variations
12
relative risk
8
secondary malignant
8
malignant neoplasms
8
proton therapy
8
photon therapy
8
prostate cancer
8

Similar Publications

MRI Assessment of Radiation-Induced Delayed-Onset Microstructural Gray Matter Changes in Nasopharyngeal Carcinoma Patients.

J Magn Reson Imaging

September 2025

School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.

Background: The dynamic progression of gray matter (GM) microstructural alterations following radiotherapy (RT) in patients, and the relationship between these microstructural abnormalities and cortical morphometric changes remains unclear.

Purpose: To longitudinally characterize RT-related GM microstructural changes and assess their potential causal links with classic morphometric alterations in patients with nasopharyngeal carcinoma (NPC).

Study Type: Prospective, longitudinal.

View Article and Find Full Text PDF

Background: The optimal number of examined lymph nodes (ELN) for accurate staging and prognosis for esophageal cancer patients receiving neoadjuvant therapy remains controversial. This study aimed to evaluate the impact of ELN count on pathologic staging and survival outcomes and to develop a predictive model for lymph node positivity in this patient population.

Methods: Data were extracted from the Surveillance, Epidemiology, and End Results (SEER) database and a multicenter cohort.

View Article and Find Full Text PDF

 Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.

View Article and Find Full Text PDF

Sodium orthovanadate (vanadate), a potent inhibitor of p53, has been shown in earlier work to alleviate total-body irradiation (TBI)-induced hematopoietic syndrome. However, as p53 plays a crucial role in normal spermatogenesis, its suppression may raise concerns about potential adverse effects on male reproductive function. In this study, we investigated whether vanadate exacerbates impairment of male fertility when administered for hematopoietic protection under TBI conditions.

View Article and Find Full Text PDF

Multimodal-based shape optimization of rectangular horns for improved radiation efficiency and directivity control.

J Acoust Soc Am

September 2025

Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093, China.

Rectangular horns are widely used in professional audio applications, but designing horns with desired radiation efficiency and directivity is time-consuming and often relies on empirical methods. A multimodal-based optimization approach is proposed in this study and can simultaneously improve the radiation efficiency and directivity control of rectangular horns over a wide frequency range. Based on acoustical properties accurately simulated by a discrete model, the terms in the objective function are constructed to measure radiation efficiency, penalize jagged shapes, and improve directivity control.

View Article and Find Full Text PDF