98%
921
2 minutes
20
Two thermoresponsive polymers based on alkyl modified poly-vinylpyrrolidone (PVP) that exhibit very sensitive and reversible temperature-dependant water solubility are described. The application of these polymers as Au nanocatalyst stabilizers leads to a "smart" thermoresponsive Au nanoparticle catalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b923290g | DOI Listing |
Drug Dev Ind Pharm
September 2025
Department of Pharmaceutics, Mallige College of Pharmacy, Silvepura, Bangalore -560090.
ObjectivesThis review aims to explore gelling drug delivery systems with emphasis on formulation strategies, gelation mechanisms, administration routes, and therapeutic benefits. It also seeks to understand the role of different polymers in achieving optimal gelation and drug release profiles. Additionally, the review aims to identify current research gaps and highlight potential areas for future development and clinical translation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, Stamford Street, London, SE1 9NH, UK.
As supramolecular assemblies, polypseudorotaxanes (PPR) exhibit inherent advantages in modular adaptability and structural programmability, with the potential to build tuneable platforms integrating various functionalities. Here we report the "one-pot" preparation of a self-assembled thiol-rich PPR (SPPR), where thiolated-α-cyclodextrins (SHαCD) spontaneously thread onto polymers, and are then crosslinked into a three-dimensional network by the thermally-triggered oxidation of thiols into disulfide bonds. The dynamic thiol groups along the SPPR provide remarkable modularity for the functionalization of thiophilic metal nanoparticles (NPs), exemplified by two application vectors.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, PR China. Electronic address:
Wearable sweat sensors offer noninvasive health monitoring through multiplexed biomarker analysis, delivering real-time diagnostics with continuous operational capability. However, chronic cutaneous interface hydration during prolonged monitoring induces adhesive delamination phenomena that manifest as signal attenuation, which fundamentally limits their clinical reliability. To address this challenge, we developed a thermodynamically adaptive polymer interface combining three functional components: mussel-inspired catechol moieties for moisture-tolerant adhesion, hydrophobic acrylates ensuring mechanical stability, and N-isopropylacrylamide enabling thermal responsiveness.
View Article and Find Full Text PDFPLoS One
September 2025
Faculty of Pharmacy, Centre for Drug Delivery Technology and Vaccine (CENTRIC), Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia.
Poor vascularization and infections hinder diabetic wound healing, posing challenges in therapy development. A multi-action approach incorporating Dicer-substrate small interfering RNA (DsiRNA) against the prostaglandin transporter (PGT) gene and gold nanoparticles (AuNPs) into a Pluronic F-127 (PF127) gel was developed. This study aimed to upscale AuNP biosynthesis using Lignosus rhinocerotis (tiger milk mushroom, TMM) extract and chitosan as stabilizers.
View Article and Find Full Text PDFRSC Adv
August 2025
Department of Chemical Engineering, University of Puerto Rico-Mayagüez Mayagüez Puerto Rico USA
The advancement of regenerative medicine requires robust, reproducible, and scalable platforms for the expansion and differentiation of human pluripotent stem cells (hPSCs) into specialized cells, such as cardiomyocytes. While current natural matrices like Matrigel™ suffer from batch-to-batch variability and limited tunability, synthetic scaffolds with controllable biochemical and mechanical properties could provide superior platforms for maintaining stem cell pluripotency and directing efficient cardiac differentiation. Here, we report the development and evaluation of a customizable thermoresponsive terpolymer composed of -isopropylacrylamide (NiPAAm), vinylphenylboronic acid (VPBA), and polyethylene glycol monomethyl ether monomethacrylate (PEGMMA) synthesized free-radical polymerization as a synthetic matrix for human hPSC culture.
View Article and Find Full Text PDF