Expression of endothelin receptor subtypes in the spiral ganglion neurons of the guinea pig.

Int J Pediatr Otorhinolaryngol

Department of Otorhinolaryngology, Jinling Hospital, Clinical School of Nanjing, University, 305 East Zhongshan Road, Nanjing 210002, China.

Published: February 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Endothelin 1 has many biological activities including regulating the functions of auditory system. The present study aimed to investigate the expression of the endothelin receptors in spiral ganglion neurons and its significance in the auditory transmission.

Methods: The cochleae of healthy guinea pigs were fixed, decalcified, embedded in paraffin and serially sectioned. The expression of endothelin receptor subunits, ET receptor A (ET-A) and ET receptor B (ET-B), was examined in the spiral ganglion neurons of guinea pig using immunohistochemical technique.

Results: Different degrees of ET-A and ET-B positive reactivity appeared in all spiral ganglion neurons from the basal turn to the apical turn.

Conclusions: These findings support the suggestion that endothelin via the endothelin receptor may play a physiological role in the spiral ganglion neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijporl.2009.11.003DOI Listing

Publication Analysis

Top Keywords

spiral ganglion
20
ganglion neurons
20
expression endothelin
12
endothelin receptor
12
neurons guinea
8
guinea pig
8
receptor
5
spiral
5
ganglion
5
neurons
5

Similar Publications

Clinical Doses of Gadodiamide Have No Damaging Effects on Cochlear Tissue In Vitro and In Vivo.

Neurotoxicology

September 2025

Department of Otolaryngology Head and Neck Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China. Electronic address:

Gadolinium-based contrast agents (GBCAs) are widely used in systemic magnetic resonance imaging (MRI) and can be employed in otology to evaluate endolymphatic hydrops in patients with Ménière's disease. Given the heavy metal properties of gadolinium and its tendency to deposit in tissues, it is essential to assess its ototoxic risk. We evaluated the ototoxicity of gadodiamide using in vitro and in vivo models.

View Article and Find Full Text PDF

Recessive variants in TWNK cause syndromic and non-syndromic post-synaptic auditory neuropathy through MtDNA replication defects.

Hum Genet

September 2025

College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China.

Recessive variants in TWNK cause syndromes arising from mitochondrial DNA (mtDNA) depletion. Hearing loss is the most prevalent manifestation in individuals with these disorders. However, the clinical and pathophysiological features have not been fully elucidated.

View Article and Find Full Text PDF

Magnetic Targeting of AAV Gene Therapy for Inner Ear Following Systemic Delivery: Preliminary Findings and Transduction Pattern in Rat Cochlea.

J Assoc Res Otolaryngol

September 2025

Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Room M1 102, Toronto, ON, M4N 3M5, Canada.

Purpose: Delivery of therapeutics to the inner ear is complicated by their inaccessible location and the presence of the blood-labyrinth barrier that restricts most blood-borne compounds from entering the inner ear. This study addresses the challenge of optimal delivery in treating inner ear disease, focusing on magnetic targeting gene therapy using adeno-associated virus (AAV).

Methods: The investigation explores three AAV serotypes (AAV2 Quad Mut, AAV2 pANC80L65, and AAV9 PHP.

View Article and Find Full Text PDF

Engineered virus-like particles for in vivo gene editing ameliorate hearing loss in murine DFNA2 model.

Mol Ther

September 2025

Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won-Sang Lee Institute for Hearing Loss, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute, Yonsei University Col

Although gene editing therapy is applicable to human diseases, its efficiency and safety require further investigation. Further, non-virus-mediated gene editor delivery is challenging in the inner ear. Here, engineered virus-like particles (eVLPs) were used for inner-ear delivery of SpCas9 and single-guided RNA to delete the Kcnq4 dominant-negative mutant allele, which causes progressive hearing loss in a non-syndromic hearing loss murine model.

View Article and Find Full Text PDF

Investigating cochlear cellular dynamics in neurofibromatosis type 2-associated schwannomatosis: a histopathological study.

Front Neurol

August 2025

The Eaton-Peabody Laboratories, The Massachusetts Eye and Ear Department of Otolaryngology - Head and Neck Surgery, Boston, MA, United States.

Sensorineural hearing loss (SNHL) is a hallmark symptom in patients with neurofibromatosis type 2-associated schwannomatosis (NF2-SWN), a genetic condition caused by mutations in the Neurofibromin II gene that encodes the tumor suppressor protein Moesin-Ezrin-Radixin-Like Protein (Merlin; also known as schwannomin). These mutations lead to the development of various tumors, including schwannomas, ependymomas and meningiomas along the vestibular nerve and the cerebellopontine angle. Original theories attributed SNHL in NF2-SWN to the mechanical compression of the vestibulocochlear nerve from the tumor itself, in addition to secretion of toxic tumor byproducts.

View Article and Find Full Text PDF