Metabolic profiling of maize mutants deficient for two glutamine synthetase isoenzymes using 1H-NMR-based metabolomics.

Phytochem Anal

EA 3900-BioPI Biologie des Plantes et Contrôle des Insectes Ravageurs, Faculté de Pharmacie, 1, rue des Louvels et Faculté des Sciences, 33, rue Saint Leu, 80037 Amiens cedex 1, France.

Published: March 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Maize mutants deficient for the expression of two genes encoding cytosolic glutamine synthetase (GS) isoenzymes GS1.3 and GS1.4 displayed reduced kernel number and kernel size, respectively, the effect of the mutation being cumulative in the double mutant. However, at maturity, shoot biomass production was not modified in all the mutants, indicating that the reaction catalysed by the enzyme is specifically involved in the control of grain yield.

Objective: To examine the physiological impact of the GS mutations on the leaf metabolic profile during the kernel filling period, during which nitrogen is remobilized from the shoots to be further exported to the kernels.

Methodology: An (1)H-NMR spectroscopy metabolomic was applied to the investigation of metabolic change of the gln1.3, gln1.4 and gln1.3/1.4 double mutant.

Results: In the three GS mutants, an increase in the amount of several N-containing metabolites such as asparagine, alanine, threonine and phophatidylcholine was observed whatever the level of nitrogen fertilisation. In addition, we found an accumulation of phenylalanine and tyrosine, two metabolites involved the primary steps of the phenylpropanoid pathway.

Conclusion: Changes in the metabolic profile of the GS mutants suggest that, when cytosolic GS activity is strongly reduced, either alternative metabolic pathways participate in the reassimilation of ammonium released during leaf protein remobilization or that premature leaf senescence is induced when kernel set and kernel filling are affected. The accumulation of phenylalanine and tyrosine in the mutant plants indicates that lignin biosynthesis is altered, thus possibly affecting ear development.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pca.1177DOI Listing

Publication Analysis

Top Keywords

maize mutants
8
mutants deficient
8
glutamine synthetase
8
synthetase isoenzymes
8
metabolic profile
8
kernel filling
8
accumulation phenylalanine
8
phenylalanine tyrosine
8
metabolic
5
mutants
5

Similar Publications

The co-infection of maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) causes maize lethal necrosis (MLN), which seriously affects the yield and quality of maize. Ubiquitination is one of the most important protein post-translational modifications. However, the role of ubiquitination modification in regulating maize resistance to viral infection remains largely unknown.

View Article and Find Full Text PDF

ZmDof08, a zinc finger transcription factor, plays critical roles in photosynthesis in maize.

Plant Cell Rep

September 2025

Key Laboratory of Germplasm Innovation for the Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, 400715, China.

The gene ZmDof08, which underlies the yellow-green leaf mutant phenotype in maize, enhances the activity of key enzymes involved in C photosynthesis, leading to a significant improvement in photosynthetic efficiency. Improving the photosynthetic efficiency of maize to increase its yield has long been a key focus in global agricultural research. Maize possesses a rich resource of leaf color mutants, which serve as valuable materials for studying leaf photosynthesis.

View Article and Find Full Text PDF

Introduction: Red yeast rice (RYR) is produced through solid-state fermentation by Monascus genus. Its functional component, Monacolin K (MK), has the same structure as lovastatin and can effectively inhibit HMG-CoA reductase, thereby reducing serum cholesterol.

Methods: A combinatorial mutagenesis strategy integrating atmospheric room-temperature plasma and heavy-ion radiation was employed to generate mutant strains.

View Article and Find Full Text PDF

Physiologically, salinity causes osmotic stress due to high solute concentration in soil and disturbs the metabolic and photosynthetic activity of the cells by increasing the toxicity of Na in the cytoplasm. Plant adaptation to salt stress is characterized by cellular ion homeostasis and vacuolar sequestration of toxic ions from cytosol mediated by H-pyrophosphatase (). The gene was cloned under the control of the promoter for yeast transformation and the promoter for tobacco transformation.

View Article and Find Full Text PDF

In previous work, we have shown that the transcription factor Nit2 plays a major role in the utilisation of non-favoured nitrogen sources like nitrate, minor amino acids or nucleobases in saprotrophic sporidia of the basidiomycete corn smut fungus Ustilago maydis. Addressing the knowledge gap regarding how filamentous phytopathogens adapt to nitrogen limitation in the host plant, we employed Δnit2 mutants in the natural FB1 × FB2 background to identify Nit2-regulated genes during biotrophy. We further investigated the impact of Nit2 on the physiology of leaf galls in nitrogen-replete versus nitrogen-limited host plants by comparative RNA-Seq and metabolic steady state analysis.

View Article and Find Full Text PDF