Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The potential for microbial nitrogen fixation in the anoxic methane seep sediments in a mud volcano, the number 8 Kumano Knoll, was characterized by molecular phylogenetic analyses. A total of 111 of the nifH (a gene coding a nitrogen fixation enzyme, Fe protein) clones were obtained from different depths of the core sediments, and the phylogenetic analysis of the clones indicated the genetic diversity of nifH genes. The predominant group detected (methane seep group 2), representing 74% of clonal abundance, was phylogenetically related to the nifH sequences obtained from the Methanosarcina species but was most closely related to the nifH sequences potentially derived from the anoxic methanotrophic archaea (ANME-2 archaea). The recovery of the nif gene clusters including the nifH sequences of the methane seep group 2 and the subsequent reverse transcription-PCR detection of the nifD and nifH genes strongly suggested that the genetic components of the gene clusters would be operative for the in situ assimilation of molecular nitrogen (N(2)) by the host microorganisms. DNA-based quantitative PCR of the archaeal 16S rRNA gene, the group-specific mcrA (a gene encoding the methyl-coenzyme M reductase alpha subunit) gene, and the nifD and nifH genes demonstrated the similar distribution patterns of the archaeal 16S rRNA gene, the mcrA groups c-d and e, and the nifD and nifH genes through the core sediments. These results supported the idea that the anoxic methanotrophic archaea ANME-2c could be the microorganisms hosting the nif gene clusters and could play an important role in not only the in situ carbon (methane) cycle but also the nitrogen cycle in subseafloor sediments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786543PMC
http://dx.doi.org/10.1128/AEM.01184-09DOI Listing

Publication Analysis

Top Keywords

methane seep
16
nifh genes
16
nitrogen fixation
12
nifh sequences
12
gene clusters
12
nifd nifh
12
seep sediments
8
number kumano
8
kumano knoll
8
nifh
8

Similar Publications

At methane seeps worldwide, syntrophic anaerobic methane-oxidizing archaea and sulfate-reducing bacteria promote carbonate precipitation and rock formation, acting as methane and carbon sinks. Although maintenance of anaerobic oxidation of methane (AOM) within seep carbonates has been documented, its reactivation upon methane exposure remains uncertain. Surface-associated microbes may metabolize sulfide from AOM, maintain carbonate anoxia, contribute to carbonate dissolution, and support higher trophic levels; however, these communities are poorly described.

View Article and Find Full Text PDF

Lignin Unlocks Stealth Carbon Sinks in Cold Seeps via Microbial Enzymatic Gatekeeping.

Research (Wash D C)

August 2025

Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.

Cold seep ecosystems serve as critical hubs in marine carbon cycling through methane emissions and organic matter processing. While terrestrial lignin constitutes a major fraction of persistent organic carbon in cold seep sediments, its microbial transformation pathways in deep-sea cold seep environments remain unexplored. Here, we present the first comprehensive analysis of lignin distribution across sediment horizons at the Haima cold seep, coupled with a multi-omics investigation of microbial lignin metabolism.

View Article and Find Full Text PDF

Anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) form syntrophic partnerships in marine sediments to consume greenhouse gas methane. While direct interspecies electron transport is proposed to enable ANME/SRB symbiosis, its electrochemical properties remain uncharacterized. Here, using sediment-free enrichment cultures, we measured the electron transport capabilities of marine consortia under physiological conditions.

View Article and Find Full Text PDF

Isotopologue Ratios Identify C-Depleted Biomarkers in Environmental Samples Impacted by Methane Turnover.

Rapid Commun Mass Spectrom

November 2025

MARUM - Center for Marine Environmental Sciences, and Faculty of Geosciences, University of Bremen, Bremen, Germany.

Rationale: The stable carbon isotopic composition (δC) of individual lipids is of great value in studying carbon cycling. Among those, microbial lipids in sediments impacted by high methane turnover stand out due to their uniquely depleted isotopic fingerprint. However, gas chromatography/isotope ratio mass spectrometry (GC/irMS) is limited to volatile compounds, whereas intact polar lipids require extensive preprocessing, which results in the loss of chemotaxonomic information.

View Article and Find Full Text PDF

Marine hydrocarbon seeps are hotspots for sulphate reduction coupled to hydrocarbon oxidation. In situ metabolic rates of sulphate-reducing bacteria (SRB) degrading hydrocarbons other than methane, however, remain poorly understood. Here, we assessed the environmental role of Desulfosarcinaceae clades SCA1, SCA2 for degradation of n-butane and clade LCA2 for n-dodecane.

View Article and Find Full Text PDF