Marine hydrocarbon seeps are hotspots for sulphate reduction coupled to hydrocarbon oxidation. In situ metabolic rates of sulphate-reducing bacteria (SRB) degrading hydrocarbons other than methane, however, remain poorly understood. Here, we assessed the environmental role of Desulfosarcinaceae clades SCA1, SCA2 for degradation of n-butane and clade LCA2 for n-dodecane.
View Article and Find Full Text PDFThe short-chain volatile alkanes ethane, propane, and butane are major components of natural gas. Released from deep-seated subsurface reservoirs through natural seepage or gas extraction, they percolate through anoxic and oxic environments before reaching the atmosphere, where they contribute to tropospheric chemistry and act as greenhouse gases. While their aerobic biological oxidation is well established, their fate in anoxic environments has only recently come into focus.
View Article and Find Full Text PDFShort-chain gaseous alkanes (SCGAs), including ethane, propane and butane, are major components of natural gas and their atmospheric emissions impact global air quality and tropospheric chemistry. Many microbial taxa can degrade SCGAs aerobically and anaerobically to CO, acting as the major biological sink of these compounds and reducing their negative impacts on climate. Environmental metagenomics and cultivation efforts have expanded our understanding of SCGA-oxidizing microorganisms.
View Article and Find Full Text PDFFront Microbiol
February 2025
The introduction of antibiotic-resistant bacteria into riverine systems through the discharge of wastewater treatment plant (WWTP) effluent and agricultural waste poses significant health risks. Even when not pathogenic, these bacteria can act as reservoirs for antibiotic resistance genes (ARGs), transferring them to pathogens that infect humans and animals. In this study, we used fluorescence hybridization, qPCR, and metagenomics to investigate how anthropogenic activities affect microbial abundance and the resistome along the Holtemme River, a small river in Germany, from near-pristine to human-impacted sites.
View Article and Find Full Text PDFNat Commun
November 2024
J Environ Sci (China)
December 2024
The Arctic, an essential ecosystem on Earth, is subject to pronounced anthropogenic pressures, most notable being the climate change and risks of crude oil pollution. As crucial elements of Arctic environments, benthic microbiomes are involved in climate-relevant biogeochemical cycles and hold the potential to remediate upcoming contamination. Yet, the Arctic benthic microbiomes are among the least explored biomes on the planet.
View Article and Find Full Text PDFAnaerobic microbial corrosion of iron-containing metals causes extensive economic damage. Some microbes are capable of direct metal-to-microbe electron transfer (electrobiocorrosion), but the prevalence of electrobiocorrosion among diverse methanogens and acetogens is poorly understood because of a lack of tools for their genetic manipulation. Previous studies have suggested that respiration with 316L stainless steel as the electron donor is indicative of electrobiocorrosion, because, unlike pure Fe, 316L stainless steel does not abiotically generate H as an intermediary electron carrier.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbon (PAH) contamination in marine environments range from low-diffusive inputs to high loads. The influence of PAH concentration on the expression of functional genes [e.g.
View Article and Find Full Text PDFMulti element compound-specific stable isotope analysis (ME-CSIA) is a tool to assess (bio)chemical reactions of molecules in the environment based on their isotopic fingerprints. To that effect, ME-CSIA concepts are initially developed with laboratory model experiments to determine the isotope fractionation factors specific for distinct (bio)chemical reactions. Here, we determined for the first time the carbon and hydrogen isotope fractionation factors for the monooxygenation of the short-chain alkanes ethane, propane, and butane.
View Article and Find Full Text PDFMicrobial interactions impact the functioning of both natural and engineered systems, yet our ability to directly monitor these highly dynamic and spatially resolved interactions in living cells is very limited. Here, we developed a synergistic approach coupling single-cell Raman microspectroscopy with N and CO stable isotope probing in a microfluidic culture system (RMCS-SIP) for live tracking of the occurrence, rate, and physiological shift of metabolic interactions in active microbial assemblages. Quantitative and robust Raman biomarkers specific for N and CO fixation in both model and bloom-forming diazotrophic cyanobacteria were established and cross-validated.
View Article and Find Full Text PDFMicrobial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that nutrient limitations are a relevant trigger for this behaviour. Here we explore the dynamics of anabolic heterogeneity under nutrient replete conditions.
View Article and Find Full Text PDFEnviron Microbiol
February 2022
Carbon and hydrogen stable isotope effects associated with methane formation by the corrosive archaeon Methanobacterium strain IM1 were determined during growth with hydrogen and iron. Isotope analyses were complemented by structural, elemental and molecular composition analyses of corrosion crusts. During growth with H , strain IM1 formed methane with average δ C of -43.
View Article and Find Full Text PDFCurr Opin Biotechnol
February 2021
Favorable interspecies associations prevail in natural microbial assemblages. Some of these favorable associations are co-metabolic dependent partnerships in which extracellular electrons are exchanged between species. For such electron exchange to occur, the cells must exhibit electroactive interfaces and get involved in direct cell-to-cell contact (Direct Interspecies Electron Transfer/DIET) or use available conductive mineral grains from their environment (Conductive-particle-mediated Interspecies Electron Transfer/CIET).
View Article and Find Full Text PDFEnviron Microbiol
September 2020
The aromatic hydrocarbon naphthalene, which occurs in coal and oil, can be degraded by aerobic or anaerobic microorganisms. A wide-spread electron acceptor for the latter is sulfate. Evidence for in situ naphthalene degradation stems in particular from the detection of 2-naphthoate and [5,6,7,8]-tetrahydro-2-naphthoate in oil field samples.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2020
The rise of oxygen on the early Earth about 2.4 billion years ago reorganized the redox cycle of harmful metal(loids), including that of arsenic, which doubtlessly imposed substantial barriers to the physiology and diversification of life. Evaluating the adaptive biological responses to these environmental challenges is inherently difficult because of the paucity of fossil records.
View Article and Find Full Text PDFPhenotypic heterogeneity within microbial populations arises even when the cells are exposed to putatively constant and homogeneous conditions. The outcome of this phenomenon can affect the whole function of the population, resulting in, for example, new "adapted" metabolic strategies and impacting its fitness at given environmental conditions. Accounting for phenotypic heterogeneity becomes thus necessary, due to its relevance in medical and applied microbiology as well as in environmental processes.
View Article and Find Full Text PDFEthane is the second most abundant component of natural gas in addition to methane, and-similar to methane-is chemically unreactive. The biological consumption of ethane under anoxic conditions was suggested by geochemical profiles at marine hydrocarbon seeps, and through ethane-dependent sulfate reduction in slurries. Nevertheless, the microorganisms and reactions that catalyse this process have to date remained unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2019
Microbial anaerobic oxidation of hydrocarbons is a key process potentially involved in a myriad of geological and biochemical environments yet has remained notoriously difficult to identify and quantify in natural environments. We performed position-specific carbon isotope analysis of propane from cracking and incubation experiments. Anaerobic bacterial oxidation of propane leads to a pronounced and previously unidentified C enrichment in the central position of propane, which contrasts with the isotope signature associated with the thermogenic process.
View Article and Find Full Text PDFThe nanoSIMS-based chemical microscopy has been introduced in biology over a decade ago. The spatial distribution of elements and isotopes analyzed by nanoSIMS can be used to reconstruct images of biological samples with a resolution down to tens of nanometers, and can be also interpreted quantitatively. Currently, a unified approach for calculation of single cell assimilation rates from nanoSIMS-derived changes in isotope ratios is missing.
View Article and Find Full Text PDF